Contrast-enhanced CT based radiomics in the preoperative prediction of perineural invasion for patients with gastric cancer

医学 无线电技术 逻辑回归 Lasso(编程语言) 放射科 曼惠特尼U检验 淋巴结 旁侵犯 核医学 癌症 内科学 计算机科学 万维网
作者
Haoze Zheng,Qiao Zheng,Mengmeng Jiang,Ce Han,Jinling Yi,Yao Ai,Congying Xie,Xiance Jin
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:154: 110393-110393 被引量:19
标识
DOI:10.1016/j.ejrad.2022.110393
摘要

To investigate the feasibility and accuracy of radiomics models based on contrast-enhanced CT (CECT) in the prediction of perineural invasion (PNI), so as to stratify high-risk recurrence and improve the management of patients with gastric cancer (GC) preoperatively.Total of 154 GC patients underwent D2 lymph node dissection with pathologically confirmed GC and preoperative CECT from an open-label, investigator-sponsored trial (NCT01711242) were enrolled. Radiomics features were extracted from contoured images and selected using Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) after inter-class correlation coefficient (ICC) analysis. Models based on radiomics features (R), clinical factors (C) and combined parameters (R + C) were built and evaluated using Support Vector Machine (SVM) and logistic regression to predict the PNI for patients with GC preoperatively.Total of 11 radiomics features were selected for final analysis, along with two clinical factors. The area under curve (AUC) of models based on R, C, and R + C with logistic regression and SVM were 0.77 vs. 0.83, 0.71 vs.0.70, 0.86 vs. 0.90, and 0.73 vs.0.80, 0.62 vs. 0.64, 0.77 vs. 0.82 in the training and testing cohorts, respectively. SVM(R + C) achieved a best AUC of 0.82(0.69-0.94) in the test cohorts with a sensitivity, specificity and accuracy of 0.63, 0.91, and 0.77, respectively.The performance of these models indicates that radiomics features alone or combined with clinical factors provide a feasible way to classify patients preoperatively and improve the management of patients with GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
成就的书包完成签到,获得积分10
3秒前
小疙瘩发布了新的文献求助10
3秒前
4秒前
metalmd发布了新的文献求助10
4秒前
4秒前
学术蠕虫发布了新的文献求助10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
sutharsons应助科研通管家采纳,获得30
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
XShu发布了新的文献求助10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得30
7秒前
传奇3应助科研通管家采纳,获得30
7秒前
Owen应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
文艺明杰发布了新的文献求助100
9秒前
所所应助嘟嘟采纳,获得10
9秒前
11秒前
HMZ完成签到,获得积分10
11秒前
研友_LkYKJZ完成签到,获得积分10
11秒前
田様应助Khr1stINK采纳,获得10
11秒前
11秒前
风趣夜云完成签到,获得积分10
12秒前
12秒前
真实的一鸣完成签到,获得积分10
12秒前
调研昵称发布了新的文献求助50
13秒前
14秒前
yKkkkkk发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808