Contrast-enhanced CT based radiomics in the preoperative prediction of perineural invasion for patients with gastric cancer

医学 无线电技术 逻辑回归 Lasso(编程语言) 放射科 曼惠特尼U检验 淋巴结 旁侵犯 核医学 癌症 内科学 计算机科学 万维网
作者
Haoze Zheng,Qiao Zheng,Mengmeng Jiang,Ce Han,Jinling Yi,Yao Ai,Congying Xie,Xiance Jin
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:154: 110393-110393 被引量:15
标识
DOI:10.1016/j.ejrad.2022.110393
摘要

To investigate the feasibility and accuracy of radiomics models based on contrast-enhanced CT (CECT) in the prediction of perineural invasion (PNI), so as to stratify high-risk recurrence and improve the management of patients with gastric cancer (GC) preoperatively.Total of 154 GC patients underwent D2 lymph node dissection with pathologically confirmed GC and preoperative CECT from an open-label, investigator-sponsored trial (NCT01711242) were enrolled. Radiomics features were extracted from contoured images and selected using Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) after inter-class correlation coefficient (ICC) analysis. Models based on radiomics features (R), clinical factors (C) and combined parameters (R + C) were built and evaluated using Support Vector Machine (SVM) and logistic regression to predict the PNI for patients with GC preoperatively.Total of 11 radiomics features were selected for final analysis, along with two clinical factors. The area under curve (AUC) of models based on R, C, and R + C with logistic regression and SVM were 0.77 vs. 0.83, 0.71 vs.0.70, 0.86 vs. 0.90, and 0.73 vs.0.80, 0.62 vs. 0.64, 0.77 vs. 0.82 in the training and testing cohorts, respectively. SVM(R + C) achieved a best AUC of 0.82(0.69-0.94) in the test cohorts with a sensitivity, specificity and accuracy of 0.63, 0.91, and 0.77, respectively.The performance of these models indicates that radiomics features alone or combined with clinical factors provide a feasible way to classify patients preoperatively and improve the management of patients with GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木叶发布了新的文献求助10
2秒前
鹏酱233完成签到,获得积分20
3秒前
俭朴尔岚完成签到,获得积分10
3秒前
和谐晓啸发布了新的文献求助10
5秒前
思源应助sdnihbhew采纳,获得10
5秒前
5秒前
7秒前
苹果饼干发布了新的文献求助10
7秒前
8秒前
ding应助Tangwz采纳,获得10
9秒前
殷勤的觅松完成签到,获得积分10
9秒前
鹏酱233发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
peansant发布了新的文献求助10
11秒前
12秒前
lyp发布了新的文献求助30
12秒前
烟花应助Bressanone采纳,获得10
14秒前
brianzk1989完成签到,获得积分10
14秒前
ardejiang发布了新的文献求助50
14秒前
WW发布了新的文献求助10
15秒前
15秒前
sdnihbhew发布了新的文献求助10
15秒前
16秒前
Owen应助和谐晓啸采纳,获得10
16秒前
Hh发布了新的文献求助10
20秒前
林夕发布了新的文献求助10
21秒前
21秒前
jack完成签到,获得积分10
21秒前
充电宝应助xvzhenyuan采纳,获得10
21秒前
21秒前
彩色的白秋完成签到,获得积分10
21秒前
NexusExplorer应助yangbo666采纳,获得10
22秒前
依克完成签到,获得积分10
23秒前
飞天乌猪完成签到,获得积分10
24秒前
hamzhang0426发布了新的文献求助10
25秒前
26秒前
紫藤蛇发布了新的文献求助10
26秒前
28秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154423
求助须知:如何正确求助?哪些是违规求助? 2805324
关于积分的说明 7864266
捐赠科研通 2463518
什么是DOI,文献DOI怎么找? 1311381
科研通“疑难数据库(出版商)”最低求助积分说明 629574
版权声明 601821