Contrast-enhanced CT based radiomics in the preoperative prediction of perineural invasion for patients with gastric cancer

医学 无线电技术 逻辑回归 Lasso(编程语言) 放射科 曼惠特尼U检验 淋巴结 旁侵犯 核医学 癌症 内科学 计算机科学 万维网
作者
Haoze Zheng,Qiao Zheng,Mengmeng Jiang,Ce Han,Jinling Yi,Yao Ai,Congying Xie,Xiance Jin
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:154: 110393-110393 被引量:22
标识
DOI:10.1016/j.ejrad.2022.110393
摘要

To investigate the feasibility and accuracy of radiomics models based on contrast-enhanced CT (CECT) in the prediction of perineural invasion (PNI), so as to stratify high-risk recurrence and improve the management of patients with gastric cancer (GC) preoperatively.Total of 154 GC patients underwent D2 lymph node dissection with pathologically confirmed GC and preoperative CECT from an open-label, investigator-sponsored trial (NCT01711242) were enrolled. Radiomics features were extracted from contoured images and selected using Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) after inter-class correlation coefficient (ICC) analysis. Models based on radiomics features (R), clinical factors (C) and combined parameters (R + C) were built and evaluated using Support Vector Machine (SVM) and logistic regression to predict the PNI for patients with GC preoperatively.Total of 11 radiomics features were selected for final analysis, along with two clinical factors. The area under curve (AUC) of models based on R, C, and R + C with logistic regression and SVM were 0.77 vs. 0.83, 0.71 vs.0.70, 0.86 vs. 0.90, and 0.73 vs.0.80, 0.62 vs. 0.64, 0.77 vs. 0.82 in the training and testing cohorts, respectively. SVM(R + C) achieved a best AUC of 0.82(0.69-0.94) in the test cohorts with a sensitivity, specificity and accuracy of 0.63, 0.91, and 0.77, respectively.The performance of these models indicates that radiomics features alone or combined with clinical factors provide a feasible way to classify patients preoperatively and improve the management of patients with GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
随心完成签到,获得积分10
刚刚
怕孤单的嚣完成签到,获得积分20
刚刚
lcxw1224完成签到,获得积分10
刚刚
1秒前
长常九久发布了新的文献求助10
2秒前
15503116087发布了新的文献求助10
2秒前
大个应助初之采纳,获得10
3秒前
te发布了新的文献求助10
3秒前
边港洋完成签到,获得积分10
5秒前
5秒前
凤羽发布了新的文献求助10
6秒前
灵巧听露发布了新的文献求助10
6秒前
可爱的函函应助猫猫无敌采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
爆米花应助刁弘睿采纳,获得10
10秒前
10秒前
10秒前
缥缈海云完成签到,获得积分10
10秒前
11秒前
斯文败类应助沙场秋点兵采纳,获得10
12秒前
123完成签到,获得积分10
12秒前
13秒前
无辜问玉发布了新的文献求助10
13秒前
13秒前
14秒前
谨慎乐安发布了新的文献求助10
14秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
缥缈海云发布了新的文献求助10
17秒前
mylaodao发布了新的文献求助10
17秒前
18秒前
chen完成签到,获得积分10
19秒前
拾贰月发布了新的文献求助10
19秒前
俊杰完成签到,获得积分10
20秒前
阿菜完成签到,获得积分10
20秒前
wanghao完成签到,获得积分20
20秒前
善学以致用应助songjiatian采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425