Contrast-enhanced CT based radiomics in the preoperative prediction of perineural invasion for patients with gastric cancer

医学 无线电技术 逻辑回归 Lasso(编程语言) 放射科 曼惠特尼U检验 淋巴结 旁侵犯 核医学 癌症 内科学 计算机科学 万维网
作者
Haoze Zheng,Qiao Zheng,Mengmeng Jiang,Ce Han,Jinling Yi,Yao Ai,Congying Xie,Xiance Jin
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:154: 110393-110393 被引量:19
标识
DOI:10.1016/j.ejrad.2022.110393
摘要

To investigate the feasibility and accuracy of radiomics models based on contrast-enhanced CT (CECT) in the prediction of perineural invasion (PNI), so as to stratify high-risk recurrence and improve the management of patients with gastric cancer (GC) preoperatively.Total of 154 GC patients underwent D2 lymph node dissection with pathologically confirmed GC and preoperative CECT from an open-label, investigator-sponsored trial (NCT01711242) were enrolled. Radiomics features were extracted from contoured images and selected using Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) after inter-class correlation coefficient (ICC) analysis. Models based on radiomics features (R), clinical factors (C) and combined parameters (R + C) were built and evaluated using Support Vector Machine (SVM) and logistic regression to predict the PNI for patients with GC preoperatively.Total of 11 radiomics features were selected for final analysis, along with two clinical factors. The area under curve (AUC) of models based on R, C, and R + C with logistic regression and SVM were 0.77 vs. 0.83, 0.71 vs.0.70, 0.86 vs. 0.90, and 0.73 vs.0.80, 0.62 vs. 0.64, 0.77 vs. 0.82 in the training and testing cohorts, respectively. SVM(R + C) achieved a best AUC of 0.82(0.69-0.94) in the test cohorts with a sensitivity, specificity and accuracy of 0.63, 0.91, and 0.77, respectively.The performance of these models indicates that radiomics features alone or combined with clinical factors provide a feasible way to classify patients preoperatively and improve the management of patients with GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
支支发布了新的文献求助10
1秒前
WYN完成签到,获得积分20
1秒前
xiaofenzi发布了新的文献求助10
1秒前
Xx发布了新的文献求助10
2秒前
PangShuting发布了新的文献求助10
3秒前
菲菲发布了新的文献求助10
3秒前
CipherSage应助佳期采纳,获得10
3秒前
LLLLLispector关注了科研通微信公众号
3秒前
Jasper应助彩色垣采纳,获得10
4秒前
华仔应助唯梦采纳,获得10
4秒前
孙燕应助唯梦采纳,获得80
4秒前
5秒前
猪猪hero发布了新的文献求助10
5秒前
寒风完成签到,获得积分10
5秒前
ziyuan发布了新的文献求助30
6秒前
上山打老虎完成签到,获得积分10
6秒前
schuang完成签到,获得积分10
6秒前
烟花应助单薄的日记本采纳,获得10
6秒前
7秒前
二区完成签到,获得积分20
8秒前
早早完成签到,获得积分10
8秒前
8秒前
9秒前
黑色卡布奇诺完成签到,获得积分10
9秒前
打打应助lili487采纳,获得10
9秒前
10秒前
嗯_好发布了新的文献求助10
10秒前
11秒前
灰太狼大王完成签到,获得积分10
11秒前
三九发布了新的文献求助10
11秒前
仁爱的汉堡完成签到,获得积分10
12秒前
新司机发布了新的文献求助10
13秒前
SciGPT应助颿曦采纳,获得10
13秒前
xhf发布了新的文献求助10
14秒前
快乐听南完成签到,获得积分10
14秒前
ly发布了新的文献求助10
14秒前
第五明月完成签到,获得积分10
14秒前
上山石头发布了新的文献求助10
14秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009979
求助须知:如何正确求助?哪些是违规求助? 3550041
关于积分的说明 11304472
捐赠科研通 3284482
什么是DOI,文献DOI怎么找? 1810684
邀请新用户注册赠送积分活动 886503
科研通“疑难数据库(出版商)”最低求助积分说明 811412