亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andrew完成签到,获得积分10
11秒前
月军完成签到,获得积分10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
25秒前
herococa应助科研通管家采纳,获得10
25秒前
34秒前
guoao发布了新的文献求助10
40秒前
打打应助D調采纳,获得30
41秒前
Celia应助徐5V采纳,获得30
46秒前
YifanWang应助科研通管家采纳,获得10
2分钟前
herococa应助科研通管家采纳,获得10
2分钟前
herococa应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
糟糕的颜完成签到 ,获得积分10
2分钟前
遇上就这样吧应助大道要熬采纳,获得100
2分钟前
韩涵完成签到 ,获得积分10
3分钟前
大道要熬完成签到,获得积分10
3分钟前
蜗牛你行完成签到,获得积分10
4分钟前
guoao发布了新的文献求助10
4分钟前
愔愔应助蜗牛你行采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
嗯嗯嗯完成签到,获得积分10
4分钟前
Lin关注了科研通微信公众号
6分钟前
领导范儿应助xurilaixi采纳,获得10
6分钟前
6分钟前
xurilaixi发布了新的文献求助10
6分钟前
6分钟前
YifanWang应助科研通管家采纳,获得40
6分钟前
YifanWang应助科研通管家采纳,获得10
6分钟前
YifanWang应助科研通管家采纳,获得10
6分钟前
xurilaixi完成签到,获得积分10
6分钟前
Lin发布了新的文献求助10
6分钟前
kanwenxian完成签到,获得积分10
6分钟前
忧郁小鸽子完成签到,获得积分10
6分钟前
obedVL完成签到,获得积分10
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Ricci Solitons in Dimensions 4 and Higher 470
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4779970
求助须知:如何正确求助?哪些是违规求助? 4109964
关于积分的说明 12713976
捐赠科研通 3832822
什么是DOI,文献DOI怎么找? 2113970
邀请新用户注册赠送积分活动 1137349
关于科研通互助平台的介绍 1022036