Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LPPQBB应助wwe采纳,获得100
1秒前
cloudup233完成签到,获得积分10
1秒前
1秒前
络巫琥关注了科研通微信公众号
1秒前
1秒前
1秒前
思源应助LMH采纳,获得10
1秒前
木头人应助研友_nEWly8采纳,获得10
2秒前
s1mple发布了新的文献求助10
2秒前
2秒前
英姑应助Polarbear29采纳,获得10
2秒前
脑洞疼应助SUN采纳,获得10
2秒前
3秒前
bkagyin应助心想事成采纳,获得10
3秒前
whhhhh发布了新的文献求助30
3秒前
ding应助义气鲂采纳,获得10
3秒前
脑洞疼应助篱篱清采纳,获得30
3秒前
情怀应助Eraser采纳,获得10
3秒前
rudjs发布了新的文献求助10
4秒前
林hh发布了新的文献求助10
4秒前
成长的点滴完成签到,获得积分10
4秒前
4秒前
4秒前
kuku_99发布了新的文献求助200
5秒前
苏莉婷完成签到,获得积分10
5秒前
5秒前
哈哈的哈哈应助XX采纳,获得20
5秒前
peach发布了新的文献求助10
5秒前
5秒前
6秒前
谜迪发布了新的文献求助10
6秒前
7秒前
共享精神应助西红柿采纳,获得10
7秒前
7秒前
7秒前
科研通AI6应助Matrix采纳,获得10
8秒前
orixero应助强壮的美女采纳,获得10
8秒前
8秒前
红糖完成签到,获得积分20
8秒前
糊涂的笑天完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286035
求助须知:如何正确求助?哪些是违规求助? 4438924
关于积分的说明 13819501
捐赠科研通 4320540
什么是DOI,文献DOI怎么找? 2371517
邀请新用户注册赠送积分活动 1367063
关于科研通互助平台的介绍 1330462