Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助keke采纳,获得10
刚刚
桃沏乌龙完成签到,获得积分10
1秒前
wwww完成签到 ,获得积分0
2秒前
痘大郎完成签到,获得积分10
2秒前
kwok完成签到 ,获得积分10
2秒前
酷波er应助优雅的冰安采纳,获得10
2秒前
zjf发布了新的文献求助10
2秒前
2秒前
2秒前
一颗猪猪球完成签到 ,获得积分20
3秒前
lijiayi完成签到,获得积分20
3秒前
Yyy完成签到,获得积分10
3秒前
4秒前
挽秋完成签到,获得积分10
4秒前
专注的问寒给李yaxiao的求助进行了留言
5秒前
5秒前
NanXin完成签到,获得积分10
5秒前
5秒前
赘婿应助Sintwetwo采纳,获得10
6秒前
6秒前
6秒前
xingfangshu发布了新的文献求助10
7秒前
7秒前
高LL完成签到,获得积分10
7秒前
9秒前
TING发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助30
9秒前
鱼的宇宙发布了新的文献求助10
10秒前
10秒前
liujian发布了新的文献求助10
10秒前
落尽海完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
12秒前
dichloro完成签到,获得积分10
12秒前
12秒前
落尽海发布了新的文献求助10
12秒前
hajimi发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727988
求助须知:如何正确求助?哪些是违规求助? 5310720
关于积分的说明 15312703
捐赠科研通 4875267
什么是DOI,文献DOI怎么找? 2618674
邀请新用户注册赠送积分活动 1568332
关于科研通互助平台的介绍 1524966