Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阳光保温杯完成签到 ,获得积分10
刚刚
刚刚
刚刚
RrOrange完成签到,获得积分10
1秒前
务实奎完成签到,获得积分10
1秒前
一期一会完成签到,获得积分10
2秒前
sunyanghu369发布了新的文献求助10
2秒前
Kinkrit完成签到 ,获得积分10
2秒前
英俊的铭应助复杂曼梅采纳,获得10
2秒前
萧萧完成签到,获得积分10
2秒前
Reese发布了新的文献求助10
3秒前
3秒前
小郑顺利毕业完成签到,获得积分10
3秒前
lin完成签到,获得积分20
3秒前
4秒前
AAA完成签到,获得积分10
5秒前
阿佳发布了新的文献求助10
6秒前
科研通AI6应助changewoo采纳,获得10
6秒前
华仔应助大海采纳,获得10
8秒前
skywalker完成签到,获得积分10
8秒前
8秒前
9秒前
123456发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助hulahula采纳,获得10
10秒前
爆米花应助勤恳怀梦采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
11秒前
11秒前
Akim应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
希望天下0贩的0应助helo采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
怕黑犀牛应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
大力信封应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360857
求助须知:如何正确求助?哪些是违规求助? 4491327
关于积分的说明 13982062
捐赠科研通 4394043
什么是DOI,文献DOI怎么找? 2413707
邀请新用户注册赠送积分活动 1406522
关于科研通互助平台的介绍 1381057