清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉巧凡完成签到,获得积分10
7秒前
浮游应助lawang采纳,获得10
56秒前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
浮游应助lawang采纳,获得10
1分钟前
iNk应助lawang采纳,获得10
1分钟前
科研通AI2S应助lawang采纳,获得10
1分钟前
Akim应助lawang采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
饺子猫完成签到,获得积分10
2分钟前
2分钟前
lawang完成签到,获得积分10
2分钟前
两个榴莲完成签到,获得积分0
2分钟前
3分钟前
3分钟前
朱文韬发布了新的文献求助10
3分钟前
朱文韬完成签到,获得积分10
3分钟前
平淡卿完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
li发布了新的文献求助10
4分钟前
kasumi完成签到 ,获得积分20
4分钟前
li完成签到,获得积分10
4分钟前
krajicek完成签到,获得积分10
5分钟前
5分钟前
6分钟前
bkagyin应助当里个当采纳,获得10
6分钟前
jinger完成签到 ,获得积分10
6分钟前
7分钟前
闻巷雨完成签到 ,获得积分10
7分钟前
7分钟前
tt完成签到,获得积分10
7分钟前
当里个当发布了新的文献求助10
7分钟前
7分钟前
傅嘉庆发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681786
求助须知:如何正确求助?哪些是违规求助? 5013072
关于积分的说明 15176105
捐赠科研通 4841287
什么是DOI,文献DOI怎么找? 2595077
邀请新用户注册赠送积分活动 1548103
关于科研通互助平台的介绍 1506117