Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助开放芝麻采纳,获得10
刚刚
dagongren完成签到,获得积分10
1秒前
任性完成签到,获得积分10
1秒前
Alex完成签到,获得积分10
1秒前
李爱国应助大头娃娃采纳,获得10
2秒前
2秒前
灵寒完成签到 ,获得积分10
2秒前
无情寒珊完成签到,获得积分10
2秒前
从容的丹珍完成签到,获得积分10
2秒前
雷乾完成签到,获得积分10
2秒前
keke完成签到,获得积分10
2秒前
2秒前
Flyzhang完成签到,获得积分10
3秒前
悲凉的小馒头完成签到 ,获得积分10
3秒前
3秒前
大模型应助REBECCA采纳,获得10
3秒前
keyanchong完成签到,获得积分10
4秒前
科研通AI2S应助summer采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
漂亮天真完成签到,获得积分10
5秒前
草莓雪酪应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
七月流火应助科研通管家采纳,获得150
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
老迟到的土豆完成签到 ,获得积分10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
小八统治世界完成签到,获得积分10
5秒前
七月流火应助科研通管家采纳,获得150
5秒前
6秒前
科目三应助科研通管家采纳,获得10
6秒前
雷乾发布了新的文献求助10
6秒前
6秒前
6秒前
下雨天的树完成签到,获得积分10
6秒前
FR完成签到,获得积分10
7秒前
缓慢天菱完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256668
求助须知:如何正确求助?哪些是违规求助? 4418830
关于积分的说明 13753577
捐赠科研通 4292020
什么是DOI,文献DOI怎么找? 2355264
邀请新用户注册赠送积分活动 1351704
关于科研通互助平台的介绍 1312465