Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不敢装睡完成签到,获得积分10
刚刚
伊笙完成签到 ,获得积分0
1秒前
1秒前
量子星尘发布了新的文献求助10
3秒前
玺青一生完成签到 ,获得积分10
6秒前
高速旋转老沁完成签到 ,获得积分10
10秒前
凉拌冰阔落完成签到 ,获得积分10
10秒前
郑zhenglanyou完成签到 ,获得积分10
11秒前
沉静的清涟完成签到,获得积分10
13秒前
一条摆摆的沙丁鱼完成签到 ,获得积分10
14秒前
啊哈哈哈哈哈完成签到 ,获得积分10
15秒前
15秒前
情怀应助yyy采纳,获得10
18秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
愛研究完成签到,获得积分10
22秒前
光之美少女完成签到 ,获得积分10
23秒前
微笑的若魔完成签到 ,获得积分10
24秒前
123456完成签到 ,获得积分10
25秒前
26秒前
严究生发布了新的文献求助10
28秒前
村长热爱美丽完成签到 ,获得积分10
31秒前
豆豆完成签到 ,获得积分10
33秒前
科研木头人完成签到 ,获得积分10
33秒前
34秒前
35秒前
Sleven完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
40秒前
Alisan完成签到,获得积分10
42秒前
吴总完成签到 ,获得积分10
43秒前
Ying完成签到,获得积分10
46秒前
leaolf应助科研通管家采纳,获得10
46秒前
NexusExplorer应助科研通管家采纳,获得10
46秒前
香蕉觅云应助发发旦旦采纳,获得10
48秒前
Dellamoffy完成签到,获得积分10
48秒前
飞快的冰淇淋完成签到 ,获得积分10
48秒前
8D完成签到,获得积分10
49秒前
49秒前
量子星尘发布了新的文献求助10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597530
求助须知:如何正确求助?哪些是违规求助? 4009101
关于积分的说明 12409876
捐赠科研通 3688331
什么是DOI,文献DOI怎么找? 2033101
邀请新用户注册赠送积分活动 1066366
科研通“疑难数据库(出版商)”最低求助积分说明 951605