Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
量子星尘发布了新的文献求助150
2秒前
2秒前
2秒前
chen发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
认真烨华完成签到,获得积分20
5秒前
曹骏轩发布了新的文献求助10
6秒前
8秒前
8秒前
英俊的铭应助自然的乘云采纳,获得10
8秒前
KD发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
灵巧晓亦发布了新的文献求助10
9秒前
9秒前
科研牛马完成签到 ,获得积分10
10秒前
憨憨发布了新的文献求助10
10秒前
汉堡包应助重要海露采纳,获得10
10秒前
梦游菌给梦游菌的求助进行了留言
11秒前
思源应助研友_8RyzBZ采纳,获得10
11秒前
斯文败类应助自然笑天采纳,获得10
11秒前
13秒前
聪明忆曼完成签到,获得积分10
13秒前
13秒前
13秒前
科研通AI6应助周城采纳,获得10
14秒前
Yan完成签到,获得积分10
15秒前
IMYUYUYU发布了新的文献求助10
15秒前
15秒前
哈哈发布了新的文献求助10
16秒前
乐天林完成签到 ,获得积分10
16秒前
米饭儿完成签到 ,获得积分10
17秒前
Eternity2025应助yy采纳,获得30
17秒前
19秒前
xiaoxiao1992完成签到 ,获得积分10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132185
求助须知:如何正确求助?哪些是违规求助? 4333666
关于积分的说明 13501674
捐赠科研通 4170698
什么是DOI,文献DOI怎么找? 2286593
邀请新用户注册赠送积分活动 1287479
关于科研通互助平台的介绍 1228414