Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
看100篇文献完成签到,获得积分10
1秒前
愉快天与发布了新的文献求助10
1秒前
zxc完成签到,获得积分10
1秒前
英俊的铭应助老高采纳,获得10
2秒前
2秒前
情怀应助DUDUDUDU采纳,获得10
3秒前
快乐大炮发布了新的文献求助10
3秒前
3秒前
3秒前
AC赵先生完成签到,获得积分10
3秒前
EasonChan发布了新的文献求助10
3秒前
KPL452B完成签到,获得积分10
4秒前
打打应助fx采纳,获得10
4秒前
CYQ发布了新的文献求助10
4秒前
英俊的铭应助Coco采纳,获得10
4秒前
霸气的幼蓉应助神勇绮烟采纳,获得10
4秒前
科研通AI6应助zxc采纳,获得10
5秒前
5秒前
七七发布了新的文献求助10
6秒前
莫天枫完成签到,获得积分10
6秒前
JamesPei应助刘娅采纳,获得10
6秒前
Hello应助汪勇采纳,获得10
6秒前
lingjuanwu发布了新的文献求助10
6秒前
善学以致用应助hgzz采纳,获得10
6秒前
2799完成签到,获得积分10
6秒前
kkkwang2完成签到,获得积分10
7秒前
www完成签到,获得积分10
7秒前
7秒前
大胆的皮卡丘完成签到,获得积分20
7秒前
Hong完成签到 ,获得积分10
7秒前
eason完成签到,获得积分10
8秒前
李耀光完成签到,获得积分10
8秒前
8秒前
羊玉林发布了新的文献求助10
8秒前
9秒前
9秒前
EasonChan完成签到,获得积分10
9秒前
李爱国应助研友_Good Hope采纳,获得10
9秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587509
求助须知:如何正确求助?哪些是违规求助? 4670670
关于积分的说明 14783758
捐赠科研通 4623041
什么是DOI,文献DOI怎么找? 2531297
邀请新用户注册赠送积分活动 1499973
关于科研通互助平台的介绍 1468080