Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
2秒前
4秒前
张飞飞飞飞飞应助杰瑞采纳,获得10
4秒前
4秒前
4秒前
5秒前
顾矜应助肥猫采纳,获得10
6秒前
酷酷依秋发布了新的文献求助10
6秒前
rslysywd完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
KeYang完成签到,获得积分10
8秒前
9秒前
10秒前
小米发布了新的文献求助10
10秒前
10秒前
李小宁发布了新的文献求助10
11秒前
煎饼蛋子完成签到,获得积分10
12秒前
江榭发布了新的文献求助10
12秒前
核桃应助美好师采纳,获得10
13秒前
dengsiqian发布了新的文献求助10
14秒前
wen发布了新的文献求助30
14秒前
科研通AI6应助LW采纳,获得10
14秒前
邓年念发布了新的文献求助10
14秒前
15秒前
美满的小熊猫完成签到,获得积分10
16秒前
传奇3应助濮阳冰海采纳,获得10
16秒前
领导范儿应助无限青柏采纳,获得10
17秒前
17秒前
17秒前
快乐的寄容完成签到 ,获得积分10
17秒前
18秒前
科研通AI6应助一定发发发采纳,获得10
19秒前
21秒前
乐乐应助江榭采纳,获得10
22秒前
Dream发布了新的文献求助10
23秒前
学徒司机眯眼看世界完成签到,获得积分10
26秒前
爆米花应助shengyou采纳,获得10
26秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501262
求助须知:如何正确求助?哪些是违规求助? 4597591
关于积分的说明 14459908
捐赠科研通 4531076
什么是DOI,文献DOI怎么找? 2483103
邀请新用户注册赠送积分活动 1466734
关于科研通互助平台的介绍 1439367