Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
窗外的你发布了新的文献求助10
1秒前
inter完成签到,获得积分10
1秒前
X123完成签到,获得积分10
2秒前
2秒前
淡淡从安完成签到 ,获得积分10
2秒前
2秒前
Joker发布了新的文献求助10
2秒前
领导范儿应助开朗小懒猪采纳,获得10
3秒前
离开时是天命完成签到,获得积分10
3秒前
醉玉颓山完成签到,获得积分10
3秒前
Yimco完成签到,获得积分10
4秒前
Bigheart贝卡斯完成签到,获得积分10
4秒前
胡萝卜完成签到 ,获得积分10
4秒前
纷飞漫天寂寥完成签到,获得积分10
4秒前
4秒前
lingVing瑜发布了新的文献求助10
4秒前
5秒前
vv发布了新的文献求助10
6秒前
清颜完成签到 ,获得积分10
6秒前
wakixe发布了新的文献求助10
6秒前
6秒前
Criminology34应助inter采纳,获得10
7秒前
qqq发布了新的文献求助10
7秒前
无情曼易发布了新的文献求助10
8秒前
Frieren完成签到 ,获得积分10
8秒前
微了个球发布了新的文献求助10
8秒前
8秒前
9秒前
Hello应助bingle采纳,获得50
9秒前
11完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
王晴完成签到,获得积分20
11秒前
沉静的映秋完成签到,获得积分10
11秒前
黄金正脸完成签到 ,获得积分10
11秒前
魔幻的觅珍完成签到,获得积分10
11秒前
龙傲天发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439303
求助须知:如何正确求助?哪些是违规求助? 4550351
关于积分的说明 14224204
捐赠科研通 4471300
什么是DOI,文献DOI怎么找? 2450329
邀请新用户注册赠送积分活动 1441193
关于科研通互助平台的介绍 1417863