DSE-YOLO: Detail semantics enhancement YOLO for multi-stage strawberry detection

计算机科学 光学(聚焦) 人工智能 语义学(计算机科学) 点式的 卷积(计算机科学) 模式识别(心理学) 计算机视觉 数学 程序设计语言 数学分析 物理 光学 人工神经网络
作者
Yan Wang,Gang Yan,Qinglu Meng,Ting Yao,Jianfeng Han,Zhang Bo
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107057-107057 被引量:49
标识
DOI:10.1016/j.compag.2022.107057
摘要

Multi-stage strawberry fruits detection is one of the important clues to estimate crop yields and assist robotic picking in modern agricultural production. However, it is difficult for detecting strawberries due to their small size, foreground-foreground class imbalance, and complex natural environment. Many works focus on how to detect fruits while ignoring multi-stage fruit detecting problems. In this paper, we propose DSE-YOLO (Detail-Semantics Enhancement You Only Look Once) to detect multi-stage strawberries. In DSE-YOLO, DSE (Detail-Semantics Enhancement) module is designed for detecting small fruits and distinguishing different stages of the fruit with higher accuracy, which utilize pointwise convolution and dilated convolution to extract various detail and semantics features in the horizontal and vertical dimensions. Exponentially Enhanced Binary Cross Entropy (EBCE) and Double Enhanced Mean Square Error (DEMSE) loss function are constructed to focus on small fruits, which can deal with foreground-foreground class imbalance problem. Experiments conducted on datasets demonstrate the superiority of DSE-YOLO over state-of-the-arts. The detection results had a mAP value of 86.58% and an F1-Score value of 81.59%, which demonstrates the effectiveness of the proposed model. Especially, DSE-YOLO can almost detect every stage of strawberry fruit accurately in the natural scene, which can provide an important theoretical basis and premise for automatic picking and monitoring system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
disciple发布了新的文献求助10
刚刚
ding应助8hua采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
hersy发布了新的文献求助10
2秒前
2秒前
脑洞疼应助流浪采纳,获得10
3秒前
乐兰正雪完成签到,获得积分10
3秒前
一期一会发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助111采纳,获得10
4秒前
4秒前
4秒前
酷波er应助AAA111122采纳,获得10
6秒前
yuyu完成签到,获得积分20
6秒前
贪玩秋蝶发布了新的文献求助10
6秒前
gaojing发布了新的文献求助10
7秒前
乐兰正雪发布了新的文献求助10
7秒前
7秒前
Littlerain~发布了新的文献求助10
7秒前
rongrongrong完成签到,获得积分10
8秒前
可yi完成签到,获得积分10
8秒前
9秒前
HH发布了新的文献求助20
9秒前
随机昵称发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
汉堡包应助玥来玥好采纳,获得10
11秒前
Lab夜归人发布了新的文献求助10
11秒前
毕业毕业完成签到,获得积分10
11秒前
洛森完成签到 ,获得积分10
12秒前
13秒前
小羊咩咩发布了新的文献求助10
13秒前
13秒前
Kelly关注了科研通微信公众号
14秒前
张三坟应助卡卡采纳,获得50
14秒前
小卢同学完成签到,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3075882
求助须知:如何正确求助?哪些是违规求助? 2728806
关于积分的说明 7506117
捐赠科研通 2377016
什么是DOI,文献DOI怎么找? 1260379
科研通“疑难数据库(出版商)”最低求助积分说明 610960
版权声明 597151