A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots

计算机科学 人工智能 机器人 特征(语言学) 适应性 单眼 自动化 计算机视觉 机器视觉 机器人末端执行器 领域(数学) 工程类 生物 机械工程 语言学 哲学 数学 生态学 纯数学
作者
Ziyue Li,Xianju Yuan,C.Y. Wang
出处
期刊:International Journal of Advanced Robotic Systems [SAGE]
卷期号:19 (3): 172988062211049-172988062211049 被引量:34
标识
DOI:10.1177/17298806221104906
摘要

The excellent performance of fruit and vegetable picking robots is usually contributed by the reasonable structure of end-effector and recognition–localization methods with high accuracy. As a result, efforts are focused on two aspects, and diverse structures of end-effector, target recognition methods as well as their combinations are yielded continuously. A good understanding for the working principle, advantages, limitations, and the adaptability in respective fields is helpful to design picking robots. Therefore, depending on different grasping ways, separating methods, structures, materials, and driving modes, main characteristics existing in traditional schemes will be depicted firstly. According to technical routes, advantages, potential applications, and challenges, underactuated manipulators and soft manipulators representing future development are then summarized systematically. Secondly, partial recognition and localization methods are also demonstrated. Specifically, current recognition manners adopting the single-feature, multi-feature fusion and deep learning are explained in view of their advantages, limitations, and successful instances. In the field of 3D localization, active vision based on the structured light, laser scanning, time of flight, and radar is reflected through the respective applications. Also, another 3D localization method called passive vision is also evaluated by advantages, limitations, the degree of automation, reconstruction effects, and the application scenario, such as monocular vision, binocular vision, and multiocular vision. Finally portrayed from structural development, recognition, and localization methods, it is possible to develop future end-effectors for fruit and vegetable picking robots with superior characteristics containing the less driving element, rigid–flexible–bionic coupling soft manipulators, simple control program, high efficiency, low damage, low cost, high versatility, and high recognition accuracy in all-season picking tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助tywznba采纳,获得10
刚刚
小肆完成签到 ,获得积分10
刚刚
汪金完成签到,获得积分10
刚刚
1秒前
黄诺雪完成签到,获得积分10
1秒前
1秒前
顺利葵阴发布了新的文献求助10
1秒前
英姑应助善良书蝶采纳,获得10
1秒前
云端完成签到 ,获得积分10
1秒前
bkagyin应助ABCDE采纳,获得30
1秒前
君莫笑完成签到,获得积分10
1秒前
1秒前
沈颖完成签到,获得积分10
2秒前
完美世界应助苏言止采纳,获得10
2秒前
3秒前
Justice完成签到,获得积分10
3秒前
核动力驴应助你好采纳,获得10
3秒前
残雪完成签到 ,获得积分10
3秒前
nininidoc完成签到,获得积分10
4秒前
科研通AI6应助kolico采纳,获得10
4秒前
给好评发布了新的文献求助10
4秒前
无限的绮晴完成签到,获得积分10
5秒前
鑫鑫完成签到,获得积分10
5秒前
sszz发布了新的文献求助10
6秒前
星辰大海应助张雯雯采纳,获得10
6秒前
qq发布了新的文献求助10
6秒前
xiaaa发布了新的文献求助10
6秒前
orixero应助科研小白采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
小马甲应助王启采纳,获得10
7秒前
tgene发布了新的文献求助10
7秒前
三七四十三完成签到,获得积分10
7秒前
核动力驴应助娓鸢采纳,获得10
7秒前
稳重飞飞完成签到,获得积分10
8秒前
豆包完成签到,获得积分10
8秒前
阿喔完成签到,获得积分10
8秒前
晓桐完成签到,获得积分10
8秒前
呵呵呵呵完成签到,获得积分10
9秒前
oasis完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271