A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots

计算机科学 人工智能 机器人 特征(语言学) 适应性 单眼 自动化 计算机视觉 机器视觉 机器人末端执行器 领域(数学) 工程类 生物 机械工程 语言学 哲学 数学 生态学 纯数学
作者
Ziyue Li,Xianju Yuan,C.Y. Wang
出处
期刊:International Journal of Advanced Robotic Systems [SAGE]
卷期号:19 (3): 172988062211049-172988062211049 被引量:34
标识
DOI:10.1177/17298806221104906
摘要

The excellent performance of fruit and vegetable picking robots is usually contributed by the reasonable structure of end-effector and recognition–localization methods with high accuracy. As a result, efforts are focused on two aspects, and diverse structures of end-effector, target recognition methods as well as their combinations are yielded continuously. A good understanding for the working principle, advantages, limitations, and the adaptability in respective fields is helpful to design picking robots. Therefore, depending on different grasping ways, separating methods, structures, materials, and driving modes, main characteristics existing in traditional schemes will be depicted firstly. According to technical routes, advantages, potential applications, and challenges, underactuated manipulators and soft manipulators representing future development are then summarized systematically. Secondly, partial recognition and localization methods are also demonstrated. Specifically, current recognition manners adopting the single-feature, multi-feature fusion and deep learning are explained in view of their advantages, limitations, and successful instances. In the field of 3D localization, active vision based on the structured light, laser scanning, time of flight, and radar is reflected through the respective applications. Also, another 3D localization method called passive vision is also evaluated by advantages, limitations, the degree of automation, reconstruction effects, and the application scenario, such as monocular vision, binocular vision, and multiocular vision. Finally portrayed from structural development, recognition, and localization methods, it is possible to develop future end-effectors for fruit and vegetable picking robots with superior characteristics containing the less driving element, rigid–flexible–bionic coupling soft manipulators, simple control program, high efficiency, low damage, low cost, high versatility, and high recognition accuracy in all-season picking tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风和日丽完成签到,获得积分10
刚刚
刚刚
shinn发布了新的文献求助10
刚刚
Akim应助现代书雪采纳,获得10
1秒前
1秒前
1秒前
麻薯发布了新的文献求助30
1秒前
1秒前
SciGPT应助Xin采纳,获得10
2秒前
张宝完成签到,获得积分10
2秒前
小艾同学发布了新的文献求助10
2秒前
2秒前
MisSorrow完成签到,获得积分10
3秒前
xss发布了新的文献求助10
3秒前
刀剑发布了新的文献求助10
3秒前
社恐的土豆完成签到,获得积分10
4秒前
Twonej应助yuu采纳,获得30
4秒前
CipherSage应助白桦林采纳,获得10
4秒前
Lucas应助无私的聪展采纳,获得30
4秒前
4秒前
乾乾发布了新的文献求助10
4秒前
鱼大大发布了新的文献求助10
4秒前
小波完成签到,获得积分10
5秒前
1233发布了新的文献求助10
5秒前
5秒前
5秒前
贪玩仙人掌完成签到,获得积分10
5秒前
111发布了新的文献求助30
6秒前
chen发布了新的文献求助10
6秒前
7秒前
草莓嘎噶发布了新的文献求助10
7秒前
彭于晏应助shinn采纳,获得10
7秒前
受伤的擎宇完成签到,获得积分10
7秒前
qwe31533完成签到,获得积分10
7秒前
8秒前
8秒前
wanci应助缓慢含烟采纳,获得10
9秒前
9秒前
9秒前
Clarie发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760209
求助须知:如何正确求助?哪些是违规求助? 5523899
关于积分的说明 15396860
捐赠科研通 4897047
什么是DOI,文献DOI怎么找? 2634010
邀请新用户注册赠送积分活动 1582088
关于科研通互助平台的介绍 1537582