A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots

计算机科学 人工智能 机器人 特征(语言学) 适应性 单眼 自动化 计算机视觉 机器视觉 机器人末端执行器 领域(数学) 工程类 生物 机械工程 语言学 哲学 数学 生态学 纯数学
作者
Ziyue Li,Xianju Yuan,C.Y. Wang
出处
期刊:International Journal of Advanced Robotic Systems [SAGE]
卷期号:19 (3): 172988062211049-172988062211049 被引量:34
标识
DOI:10.1177/17298806221104906
摘要

The excellent performance of fruit and vegetable picking robots is usually contributed by the reasonable structure of end-effector and recognition–localization methods with high accuracy. As a result, efforts are focused on two aspects, and diverse structures of end-effector, target recognition methods as well as their combinations are yielded continuously. A good understanding for the working principle, advantages, limitations, and the adaptability in respective fields is helpful to design picking robots. Therefore, depending on different grasping ways, separating methods, structures, materials, and driving modes, main characteristics existing in traditional schemes will be depicted firstly. According to technical routes, advantages, potential applications, and challenges, underactuated manipulators and soft manipulators representing future development are then summarized systematically. Secondly, partial recognition and localization methods are also demonstrated. Specifically, current recognition manners adopting the single-feature, multi-feature fusion and deep learning are explained in view of their advantages, limitations, and successful instances. In the field of 3D localization, active vision based on the structured light, laser scanning, time of flight, and radar is reflected through the respective applications. Also, another 3D localization method called passive vision is also evaluated by advantages, limitations, the degree of automation, reconstruction effects, and the application scenario, such as monocular vision, binocular vision, and multiocular vision. Finally portrayed from structural development, recognition, and localization methods, it is possible to develop future end-effectors for fruit and vegetable picking robots with superior characteristics containing the less driving element, rigid–flexible–bionic coupling soft manipulators, simple control program, high efficiency, low damage, low cost, high versatility, and high recognition accuracy in all-season picking tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达布溜完成签到,获得积分10
刚刚
2秒前
充电宝应助无情香烟采纳,获得10
2秒前
英姑应助悦悦采纳,获得30
2秒前
善学以致用应助Jasmine采纳,获得10
2秒前
2秒前
2秒前
chen王完成签到,获得积分10
2秒前
FashionBoy应助lyy采纳,获得10
2秒前
何在发布了新的文献求助10
3秒前
强健的苗条完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
平常的半凡应助饱满服饰采纳,获得10
5秒前
平常的半凡应助饱满服饰采纳,获得10
5秒前
平常的半凡应助饱满服饰采纳,获得10
5秒前
平常的半凡应助饱满服饰采纳,获得10
5秒前
只是网名百科完成签到,获得积分10
5秒前
莉莉完成签到,获得积分10
5秒前
清河剑客发布了新的文献求助10
7秒前
白兔发布了新的文献求助10
7秒前
雨下整夜完成签到,获得积分10
8秒前
王某某发布了新的文献求助10
8秒前
yc完成签到 ,获得积分10
9秒前
端庄的冰枫完成签到,获得积分10
10秒前
李健的粉丝团团长应助kai采纳,获得10
11秒前
张文杰发布了新的文献求助10
11秒前
12秒前
彭于晏应助积极的怜南采纳,获得10
12秒前
王伟涛完成签到,获得积分10
13秒前
浮游应助莉莉采纳,获得10
13秒前
上弦月完成签到,获得积分10
13秒前
14秒前
14秒前
小二郎应助无心的安青采纳,获得10
14秒前
贪玩钢铁侠完成签到,获得积分10
15秒前
15秒前
bybyby完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360565
求助须知:如何正确求助?哪些是违规求助? 4491182
关于积分的说明 13981625
捐赠科研通 4393796
什么是DOI,文献DOI怎么找? 2413638
邀请新用户注册赠送积分活动 1406466
关于科研通互助平台的介绍 1380932