A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots

计算机科学 人工智能 机器人 特征(语言学) 适应性 单眼 自动化 计算机视觉 机器视觉 机器人末端执行器 领域(数学) 工程类 生物 机械工程 语言学 哲学 数学 生态学 纯数学
作者
Ziyue Li,Xianju Yuan,C.Y. Wang
出处
期刊:International Journal of Advanced Robotic Systems [SAGE]
卷期号:19 (3): 172988062211049-172988062211049 被引量:34
标识
DOI:10.1177/17298806221104906
摘要

The excellent performance of fruit and vegetable picking robots is usually contributed by the reasonable structure of end-effector and recognition–localization methods with high accuracy. As a result, efforts are focused on two aspects, and diverse structures of end-effector, target recognition methods as well as their combinations are yielded continuously. A good understanding for the working principle, advantages, limitations, and the adaptability in respective fields is helpful to design picking robots. Therefore, depending on different grasping ways, separating methods, structures, materials, and driving modes, main characteristics existing in traditional schemes will be depicted firstly. According to technical routes, advantages, potential applications, and challenges, underactuated manipulators and soft manipulators representing future development are then summarized systematically. Secondly, partial recognition and localization methods are also demonstrated. Specifically, current recognition manners adopting the single-feature, multi-feature fusion and deep learning are explained in view of their advantages, limitations, and successful instances. In the field of 3D localization, active vision based on the structured light, laser scanning, time of flight, and radar is reflected through the respective applications. Also, another 3D localization method called passive vision is also evaluated by advantages, limitations, the degree of automation, reconstruction effects, and the application scenario, such as monocular vision, binocular vision, and multiocular vision. Finally portrayed from structural development, recognition, and localization methods, it is possible to develop future end-effectors for fruit and vegetable picking robots with superior characteristics containing the less driving element, rigid–flexible–bionic coupling soft manipulators, simple control program, high efficiency, low damage, low cost, high versatility, and high recognition accuracy in all-season picking tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助michael采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
alpv完成签到,获得积分10
1秒前
小鱼留下了新的社区评论
2秒前
aichan完成签到,获得积分10
3秒前
青柠发布了新的文献求助10
3秒前
明天发布了新的文献求助20
4秒前
予安发布了新的文献求助10
4秒前
大力帽子发布了新的文献求助10
5秒前
陶醉之玉完成签到,获得积分10
5秒前
yuyu发布了新的文献求助30
5秒前
5秒前
Angora完成签到,获得积分10
6秒前
我要查文献完成签到 ,获得积分10
6秒前
1122完成签到 ,获得积分10
7秒前
Maestro_S应助Lorain采纳,获得10
7秒前
FOREST完成签到,获得积分20
9秒前
大厉害完成签到,获得积分10
10秒前
果冻呀发布了新的文献求助10
10秒前
11秒前
西西发布了新的文献求助10
11秒前
Luka完成签到,获得积分10
12秒前
魔幻的凤凰完成签到,获得积分10
12秒前
左眼天堂完成签到,获得积分10
12秒前
13秒前
14秒前
温柔的傲霜完成签到,获得积分10
14秒前
龙仔发布了新的文献求助10
15秒前
FOD完成签到 ,获得积分10
16秒前
17秒前
17秒前
leiqin发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
淳于含芙完成签到,获得积分10
17秒前
19秒前
TS完成签到,获得积分10
19秒前
Criminology34应助现代的澜采纳,获得10
20秒前
Orange应助昏睡的桐采纳,获得30
21秒前
leiqin完成签到,获得积分10
22秒前
西瓜完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708988
求助须知:如何正确求助?哪些是违规求助? 5191995
关于积分的说明 15255588
捐赠科研通 4861880
什么是DOI,文献DOI怎么找? 2609733
邀请新用户注册赠送积分活动 1560175
关于科研通互助平台的介绍 1517941