已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots

计算机科学 人工智能 机器人 特征(语言学) 适应性 单眼 自动化 计算机视觉 机器视觉 机器人末端执行器 领域(数学) 工程类 数学 纯数学 生物 机械工程 生态学 哲学 语言学
作者
Ziyue Li,Xianju Yuan,C.Y. Wang
出处
期刊:International Journal of Advanced Robotic Systems [SAGE]
卷期号:19 (3): 172988062211049-172988062211049 被引量:34
标识
DOI:10.1177/17298806221104906
摘要

The excellent performance of fruit and vegetable picking robots is usually contributed by the reasonable structure of end-effector and recognition–localization methods with high accuracy. As a result, efforts are focused on two aspects, and diverse structures of end-effector, target recognition methods as well as their combinations are yielded continuously. A good understanding for the working principle, advantages, limitations, and the adaptability in respective fields is helpful to design picking robots. Therefore, depending on different grasping ways, separating methods, structures, materials, and driving modes, main characteristics existing in traditional schemes will be depicted firstly. According to technical routes, advantages, potential applications, and challenges, underactuated manipulators and soft manipulators representing future development are then summarized systematically. Secondly, partial recognition and localization methods are also demonstrated. Specifically, current recognition manners adopting the single-feature, multi-feature fusion and deep learning are explained in view of their advantages, limitations, and successful instances. In the field of 3D localization, active vision based on the structured light, laser scanning, time of flight, and radar is reflected through the respective applications. Also, another 3D localization method called passive vision is also evaluated by advantages, limitations, the degree of automation, reconstruction effects, and the application scenario, such as monocular vision, binocular vision, and multiocular vision. Finally portrayed from structural development, recognition, and localization methods, it is possible to develop future end-effectors for fruit and vegetable picking robots with superior characteristics containing the less driving element, rigid–flexible–bionic coupling soft manipulators, simple control program, high efficiency, low damage, low cost, high versatility, and high recognition accuracy in all-season picking tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5km发布了新的文献求助20
刚刚
你爹完成签到 ,获得积分10
2秒前
Ruby完成签到,获得积分10
2秒前
11122发布了新的文献求助10
5秒前
细心帽子完成签到 ,获得积分10
6秒前
Garfield完成签到 ,获得积分10
7秒前
吴兰田完成签到,获得积分10
8秒前
纯原周边完成签到 ,获得积分10
9秒前
10秒前
冬菊完成签到 ,获得积分10
11秒前
Echo完成签到,获得积分10
12秒前
江流儿完成签到,获得积分10
12秒前
无花果应助jinling采纳,获得10
12秒前
ok完成签到,获得积分10
13秒前
英姑应助XIEQ采纳,获得10
14秒前
执着的海发布了新的文献求助10
14秒前
胖胖猪完成签到,获得积分10
14秒前
长情无心完成签到,获得积分10
14秒前
TTTHANKS发布了新的文献求助10
14秒前
汤姆完成签到,获得积分10
15秒前
旺仔先生完成签到 ,获得积分10
16秒前
16秒前
雪白阑悦完成签到,获得积分20
17秒前
女爰舍予完成签到 ,获得积分10
17秒前
温婉的凝芙完成签到 ,获得积分10
20秒前
坚强的纸飞机完成签到,获得积分10
20秒前
22秒前
栀璃鸳挽完成签到,获得积分10
23秒前
24秒前
端庄洪纲完成签到,获得积分10
25秒前
纯原周边关注了科研通微信公众号
27秒前
慕青应助材料生采纳,获得10
28秒前
脆脆鲨完成签到,获得积分10
29秒前
XIEQ发布了新的文献求助10
29秒前
研友_VZG7GZ应助执着的海采纳,获得10
31秒前
xkai发布了新的文献求助10
31秒前
32秒前
陆aa完成签到 ,获得积分10
34秒前
35秒前
隐形曼青应助Jinyang采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573156
求助须知:如何正确求助?哪些是违规求助? 4659297
关于积分的说明 14724290
捐赠科研通 4599114
什么是DOI,文献DOI怎么找? 2524112
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464681