A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots

计算机科学 人工智能 机器人 特征(语言学) 适应性 单眼 自动化 计算机视觉 机器视觉 机器人末端执行器 领域(数学) 工程类 生物 机械工程 语言学 哲学 数学 生态学 纯数学
作者
Ziyue Li,Xianju Yuan,C.Y. Wang
出处
期刊:International Journal of Advanced Robotic Systems [SAGE Publishing]
卷期号:19 (3): 172988062211049-172988062211049 被引量:34
标识
DOI:10.1177/17298806221104906
摘要

The excellent performance of fruit and vegetable picking robots is usually contributed by the reasonable structure of end-effector and recognition–localization methods with high accuracy. As a result, efforts are focused on two aspects, and diverse structures of end-effector, target recognition methods as well as their combinations are yielded continuously. A good understanding for the working principle, advantages, limitations, and the adaptability in respective fields is helpful to design picking robots. Therefore, depending on different grasping ways, separating methods, structures, materials, and driving modes, main characteristics existing in traditional schemes will be depicted firstly. According to technical routes, advantages, potential applications, and challenges, underactuated manipulators and soft manipulators representing future development are then summarized systematically. Secondly, partial recognition and localization methods are also demonstrated. Specifically, current recognition manners adopting the single-feature, multi-feature fusion and deep learning are explained in view of their advantages, limitations, and successful instances. In the field of 3D localization, active vision based on the structured light, laser scanning, time of flight, and radar is reflected through the respective applications. Also, another 3D localization method called passive vision is also evaluated by advantages, limitations, the degree of automation, reconstruction effects, and the application scenario, such as monocular vision, binocular vision, and multiocular vision. Finally portrayed from structural development, recognition, and localization methods, it is possible to develop future end-effectors for fruit and vegetable picking robots with superior characteristics containing the less driving element, rigid–flexible–bionic coupling soft manipulators, simple control program, high efficiency, low damage, low cost, high versatility, and high recognition accuracy in all-season picking tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ocean完成签到,获得积分10
2秒前
天tian完成签到,获得积分10
2秒前
2秒前
小鱼完成签到,获得积分20
3秒前
蜜獾完成签到,获得积分20
3秒前
来路遥迢应助黄金城采纳,获得10
4秒前
ZhangLetian关注了科研通微信公众号
4秒前
苏苏完成签到,获得积分10
4秒前
zhangqin完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
整齐的曼安完成签到,获得积分10
6秒前
6秒前
6秒前
小青椒应助1m4采纳,获得20
6秒前
6秒前
浅眸流年完成签到,获得积分10
6秒前
打打应助枳8705采纳,获得10
6秒前
6秒前
搜集达人应助Sthwrong采纳,获得10
7秒前
汉堡包应助无敌鱼采纳,获得10
7秒前
严好香完成签到 ,获得积分10
7秒前
林雨发布了新的文献求助10
7秒前
董泽云发布了新的文献求助10
8秒前
ttqql发布了新的文献求助10
8秒前
寒塘发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
浮游应助研友_nVNBVn采纳,获得10
11秒前
11秒前
monster0101发布了新的文献求助80
11秒前
11秒前
HAO发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569