已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots

计算机科学 人工智能 机器人 特征(语言学) 适应性 单眼 自动化 计算机视觉 机器视觉 机器人末端执行器 领域(数学) 工程类 生物 机械工程 语言学 哲学 数学 生态学 纯数学
作者
Ziyue Li,Xianju Yuan,C.Y. Wang
出处
期刊:International Journal of Advanced Robotic Systems [SAGE]
卷期号:19 (3): 172988062211049-172988062211049 被引量:34
标识
DOI:10.1177/17298806221104906
摘要

The excellent performance of fruit and vegetable picking robots is usually contributed by the reasonable structure of end-effector and recognition–localization methods with high accuracy. As a result, efforts are focused on two aspects, and diverse structures of end-effector, target recognition methods as well as their combinations are yielded continuously. A good understanding for the working principle, advantages, limitations, and the adaptability in respective fields is helpful to design picking robots. Therefore, depending on different grasping ways, separating methods, structures, materials, and driving modes, main characteristics existing in traditional schemes will be depicted firstly. According to technical routes, advantages, potential applications, and challenges, underactuated manipulators and soft manipulators representing future development are then summarized systematically. Secondly, partial recognition and localization methods are also demonstrated. Specifically, current recognition manners adopting the single-feature, multi-feature fusion and deep learning are explained in view of their advantages, limitations, and successful instances. In the field of 3D localization, active vision based on the structured light, laser scanning, time of flight, and radar is reflected through the respective applications. Also, another 3D localization method called passive vision is also evaluated by advantages, limitations, the degree of automation, reconstruction effects, and the application scenario, such as monocular vision, binocular vision, and multiocular vision. Finally portrayed from structural development, recognition, and localization methods, it is possible to develop future end-effectors for fruit and vegetable picking robots with superior characteristics containing the less driving element, rigid–flexible–bionic coupling soft manipulators, simple control program, high efficiency, low damage, low cost, high versatility, and high recognition accuracy in all-season picking tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qqer发布了新的文献求助30
1秒前
jimskylxk发布了新的文献求助10
2秒前
2秒前
搞怪山晴发布了新的文献求助10
2秒前
研友_VZG7GZ应助冥王星采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
隐形曼青应助jjdeng采纳,获得10
7秒前
恒星的恒心完成签到 ,获得积分10
8秒前
wanci应助lolly采纳,获得10
8秒前
小蘑菇应助搞怪山晴采纳,获得10
9秒前
10秒前
烟花应助徐嘎嘎采纳,获得10
11秒前
11秒前
11秒前
11秒前
舒适的方盒完成签到 ,获得积分10
11秒前
JaneChen发布了新的文献求助10
11秒前
12秒前
qqer完成签到,获得积分10
13秒前
冥王星发布了新的文献求助10
13秒前
Manta完成签到,获得积分10
14秒前
Hello应助执着的觅露采纳,获得30
14秒前
17秒前
17秒前
开心依珊发布了新的文献求助10
17秒前
孟晓晖完成签到 ,获得积分10
17秒前
20秒前
kk完成签到,获得积分10
20秒前
21秒前
djxdjt发布了新的文献求助10
21秒前
jjdeng发布了新的文献求助10
22秒前
orixero应助jimskylxk采纳,获得10
22秒前
今后应助caoyy采纳,获得10
23秒前
尝原完成签到,获得积分10
23秒前
科研通AI6.1应助小明采纳,获得10
23秒前
Aimee发布了新的文献求助30
25秒前
lydia完成签到,获得积分10
26秒前
开心依珊完成签到,获得积分20
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771909
求助须知:如何正确求助?哪些是违规求助? 5594239
关于积分的说明 15428487
捐赠科研通 4905096
什么是DOI,文献DOI怎么找? 2639208
邀请新用户注册赠送积分活动 1587085
关于科研通互助平台的介绍 1541964