A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots

计算机科学 人工智能 机器人 特征(语言学) 适应性 单眼 自动化 计算机视觉 机器视觉 机器人末端执行器 领域(数学) 工程类 生物 机械工程 语言学 哲学 数学 生态学 纯数学
作者
Ziyue Li,Xianju Yuan,C.Y. Wang
出处
期刊:International Journal of Advanced Robotic Systems [SAGE]
卷期号:19 (3): 172988062211049-172988062211049 被引量:34
标识
DOI:10.1177/17298806221104906
摘要

The excellent performance of fruit and vegetable picking robots is usually contributed by the reasonable structure of end-effector and recognition–localization methods with high accuracy. As a result, efforts are focused on two aspects, and diverse structures of end-effector, target recognition methods as well as their combinations are yielded continuously. A good understanding for the working principle, advantages, limitations, and the adaptability in respective fields is helpful to design picking robots. Therefore, depending on different grasping ways, separating methods, structures, materials, and driving modes, main characteristics existing in traditional schemes will be depicted firstly. According to technical routes, advantages, potential applications, and challenges, underactuated manipulators and soft manipulators representing future development are then summarized systematically. Secondly, partial recognition and localization methods are also demonstrated. Specifically, current recognition manners adopting the single-feature, multi-feature fusion and deep learning are explained in view of their advantages, limitations, and successful instances. In the field of 3D localization, active vision based on the structured light, laser scanning, time of flight, and radar is reflected through the respective applications. Also, another 3D localization method called passive vision is also evaluated by advantages, limitations, the degree of automation, reconstruction effects, and the application scenario, such as monocular vision, binocular vision, and multiocular vision. Finally portrayed from structural development, recognition, and localization methods, it is possible to develop future end-effectors for fruit and vegetable picking robots with superior characteristics containing the less driving element, rigid–flexible–bionic coupling soft manipulators, simple control program, high efficiency, low damage, low cost, high versatility, and high recognition accuracy in all-season picking tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助梧wu采纳,获得10
1秒前
lyx发布了新的文献求助10
2秒前
bkagyin应助小迪采纳,获得10
2秒前
qianqiu发布了新的文献求助10
3秒前
3秒前
3秒前
科研通AI6应助鲜艳的亿先采纳,获得30
4秒前
科研通AI6应助乔木采纳,获得10
5秒前
jazzmantan发布了新的文献求助10
5秒前
spzdss发布了新的文献求助20
5秒前
lingzi1015完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
gis_xu发布了新的文献求助10
7秒前
8秒前
9秒前
陈一完成签到 ,获得积分10
9秒前
香蕉觅云应助年华采纳,获得10
11秒前
夏侯幻梦完成签到 ,获得积分10
11秒前
科研通AI6应助李某某采纳,获得10
11秒前
汉堡包应助简单幸福采纳,获得10
13秒前
hbhbj发布了新的文献求助10
13秒前
赵坤煊发布了新的文献求助20
14秒前
15秒前
binky完成签到,获得积分10
15秒前
科研小弟完成签到,获得积分10
15秒前
Chief完成签到,获得积分0
15秒前
15秒前
黄上权完成签到 ,获得积分10
15秒前
小唐发布了新的文献求助10
16秒前
兴奋雁蓉发布了新的文献求助10
16秒前
17秒前
完美世界应助banksy采纳,获得10
17秒前
18秒前
18秒前
科研通AI6应助圆锥香蕉采纳,获得10
19秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406795
求助须知:如何正确求助?哪些是违规求助? 4524516
关于积分的说明 14098938
捐赠科研通 4438379
什么是DOI,文献DOI怎么找? 2436217
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340