A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots

计算机科学 人工智能 机器人 特征(语言学) 适应性 单眼 自动化 计算机视觉 机器视觉 机器人末端执行器 领域(数学) 工程类 生物 机械工程 语言学 哲学 数学 生态学 纯数学
作者
Ziyue Li,Xianju Yuan,C.Y. Wang
出处
期刊:International Journal of Advanced Robotic Systems [SAGE Publishing]
卷期号:19 (3): 172988062211049-172988062211049 被引量:34
标识
DOI:10.1177/17298806221104906
摘要

The excellent performance of fruit and vegetable picking robots is usually contributed by the reasonable structure of end-effector and recognition–localization methods with high accuracy. As a result, efforts are focused on two aspects, and diverse structures of end-effector, target recognition methods as well as their combinations are yielded continuously. A good understanding for the working principle, advantages, limitations, and the adaptability in respective fields is helpful to design picking robots. Therefore, depending on different grasping ways, separating methods, structures, materials, and driving modes, main characteristics existing in traditional schemes will be depicted firstly. According to technical routes, advantages, potential applications, and challenges, underactuated manipulators and soft manipulators representing future development are then summarized systematically. Secondly, partial recognition and localization methods are also demonstrated. Specifically, current recognition manners adopting the single-feature, multi-feature fusion and deep learning are explained in view of their advantages, limitations, and successful instances. In the field of 3D localization, active vision based on the structured light, laser scanning, time of flight, and radar is reflected through the respective applications. Also, another 3D localization method called passive vision is also evaluated by advantages, limitations, the degree of automation, reconstruction effects, and the application scenario, such as monocular vision, binocular vision, and multiocular vision. Finally portrayed from structural development, recognition, and localization methods, it is possible to develop future end-effectors for fruit and vegetable picking robots with superior characteristics containing the less driving element, rigid–flexible–bionic coupling soft manipulators, simple control program, high efficiency, low damage, low cost, high versatility, and high recognition accuracy in all-season picking tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
美好斓发布了新的文献求助30
刚刚
13679127159完成签到,获得积分20
刚刚
福祸相依完成签到,获得积分10
刚刚
刚刚
Bassvv完成签到,获得积分10
刚刚
1秒前
桑榆发布了新的文献求助10
1秒前
浮游应助润润轩轩采纳,获得10
1秒前
zz发布了新的文献求助20
1秒前
111发布了新的文献求助20
1秒前
1秒前
顺利的傲之完成签到 ,获得积分10
1秒前
1秒前
2秒前
jiajia发布了新的文献求助10
2秒前
侯佳君完成签到,获得积分20
2秒前
宇宇完成签到,获得积分10
2秒前
2秒前
烟花应助liu采纳,获得10
3秒前
ss完成签到,获得积分20
3秒前
毅然完成签到,获得积分10
3秒前
3秒前
CodeCraft应助独特的绿柳采纳,获得10
4秒前
4秒前
舒服的寻云完成签到 ,获得积分10
4秒前
科研小白发布了新的文献求助10
4秒前
背光发布了新的文献求助30
4秒前
5秒前
5秒前
fs完成签到,获得积分10
5秒前
小蘑菇应助Ferry采纳,获得10
6秒前
倪侃发布了新的文献求助10
6秒前
Dream Luminator完成签到,获得积分10
6秒前
甜美千山完成签到 ,获得积分10
7秒前
river_121完成签到,获得积分10
7秒前
Upupuu完成签到,获得积分10
7秒前
赵三仟完成签到,获得积分10
7秒前
7秒前
Snow发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167371
求助须知:如何正确求助?哪些是违规求助? 4359251
关于积分的说明 13572619
捐赠科研通 4205717
什么是DOI,文献DOI怎么找? 2306586
邀请新用户注册赠送积分活动 1306217
关于科研通互助平台的介绍 1252763