A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots

计算机科学 人工智能 机器人 特征(语言学) 适应性 单眼 自动化 计算机视觉 机器视觉 机器人末端执行器 领域(数学) 工程类 生物 机械工程 语言学 哲学 数学 生态学 纯数学
作者
Ziyue Li,Xianju Yuan,C.Y. Wang
出处
期刊:International Journal of Advanced Robotic Systems [SAGE]
卷期号:19 (3): 172988062211049-172988062211049 被引量:34
标识
DOI:10.1177/17298806221104906
摘要

The excellent performance of fruit and vegetable picking robots is usually contributed by the reasonable structure of end-effector and recognition–localization methods with high accuracy. As a result, efforts are focused on two aspects, and diverse structures of end-effector, target recognition methods as well as their combinations are yielded continuously. A good understanding for the working principle, advantages, limitations, and the adaptability in respective fields is helpful to design picking robots. Therefore, depending on different grasping ways, separating methods, structures, materials, and driving modes, main characteristics existing in traditional schemes will be depicted firstly. According to technical routes, advantages, potential applications, and challenges, underactuated manipulators and soft manipulators representing future development are then summarized systematically. Secondly, partial recognition and localization methods are also demonstrated. Specifically, current recognition manners adopting the single-feature, multi-feature fusion and deep learning are explained in view of their advantages, limitations, and successful instances. In the field of 3D localization, active vision based on the structured light, laser scanning, time of flight, and radar is reflected through the respective applications. Also, another 3D localization method called passive vision is also evaluated by advantages, limitations, the degree of automation, reconstruction effects, and the application scenario, such as monocular vision, binocular vision, and multiocular vision. Finally portrayed from structural development, recognition, and localization methods, it is possible to develop future end-effectors for fruit and vegetable picking robots with superior characteristics containing the less driving element, rigid–flexible–bionic coupling soft manipulators, simple control program, high efficiency, low damage, low cost, high versatility, and high recognition accuracy in all-season picking tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
11发布了新的文献求助10
2秒前
张展鹏发布了新的文献求助30
2秒前
十一发布了新的文献求助10
4秒前
杨猫宁完成签到,获得积分10
4秒前
5秒前
ZZDXXX完成签到,获得积分10
5秒前
啾啾发布了新的文献求助10
5秒前
5秒前
amberzyc应助Double采纳,获得10
6秒前
xiaoluo完成签到 ,获得积分10
6秒前
浮游应助典雅又夏采纳,获得10
6秒前
6秒前
胡周瑜完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
77完成签到,获得积分20
8秒前
火龙果完成签到,获得积分10
9秒前
11秒前
feitian201861发布了新的文献求助10
11秒前
慕青应助11采纳,获得10
11秒前
12秒前
申燕婷完成签到 ,获得积分10
12秒前
深情的秋白完成签到 ,获得积分10
12秒前
无情思卉发布了新的文献求助10
12秒前
舒适的若云完成签到,获得积分20
13秒前
13秒前
14秒前
14秒前
CipherSage应助马小花花花儿采纳,获得10
14秒前
14秒前
muziyang完成签到,获得积分10
15秒前
星辰发布了新的文献求助10
15秒前
16秒前
充电宝应助LongSun采纳,获得10
16秒前
16秒前
16秒前
17秒前
思源应助啾啾采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5351663
求助须知:如何正确求助?哪些是违规求助? 4484642
关于积分的说明 13959937
捐赠科研通 4384271
什么是DOI,文献DOI怎么找? 2408898
邀请新用户注册赠送积分活动 1401448
关于科研通互助平台的介绍 1374928