A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots

计算机科学 人工智能 机器人 特征(语言学) 适应性 单眼 自动化 计算机视觉 机器视觉 机器人末端执行器 领域(数学) 工程类 生物 机械工程 语言学 哲学 数学 生态学 纯数学
作者
Ziyue Li,Xianju Yuan,C.Y. Wang
出处
期刊:International Journal of Advanced Robotic Systems [SAGE Publishing]
卷期号:19 (3): 172988062211049-172988062211049 被引量:34
标识
DOI:10.1177/17298806221104906
摘要

The excellent performance of fruit and vegetable picking robots is usually contributed by the reasonable structure of end-effector and recognition–localization methods with high accuracy. As a result, efforts are focused on two aspects, and diverse structures of end-effector, target recognition methods as well as their combinations are yielded continuously. A good understanding for the working principle, advantages, limitations, and the adaptability in respective fields is helpful to design picking robots. Therefore, depending on different grasping ways, separating methods, structures, materials, and driving modes, main characteristics existing in traditional schemes will be depicted firstly. According to technical routes, advantages, potential applications, and challenges, underactuated manipulators and soft manipulators representing future development are then summarized systematically. Secondly, partial recognition and localization methods are also demonstrated. Specifically, current recognition manners adopting the single-feature, multi-feature fusion and deep learning are explained in view of their advantages, limitations, and successful instances. In the field of 3D localization, active vision based on the structured light, laser scanning, time of flight, and radar is reflected through the respective applications. Also, another 3D localization method called passive vision is also evaluated by advantages, limitations, the degree of automation, reconstruction effects, and the application scenario, such as monocular vision, binocular vision, and multiocular vision. Finally portrayed from structural development, recognition, and localization methods, it is possible to develop future end-effectors for fruit and vegetable picking robots with superior characteristics containing the less driving element, rigid–flexible–bionic coupling soft manipulators, simple control program, high efficiency, low damage, low cost, high versatility, and high recognition accuracy in all-season picking tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荆月竹完成签到,获得积分10
1秒前
ljloveljj关注了科研通微信公众号
2秒前
钢笔发布了新的文献求助10
2秒前
sevenseven完成签到,获得积分10
2秒前
Orange应助小刘采纳,获得10
2秒前
传奇3应助luckyhan采纳,获得10
3秒前
笑点低的语蕊完成签到,获得积分20
3秒前
N1发布了新的文献求助10
4秒前
4秒前
Anima应助物理陈老师采纳,获得10
5秒前
科目三应助平淡映易采纳,获得10
5秒前
完美世界应助果粒程采纳,获得10
5秒前
6秒前
霸气的香菇完成签到 ,获得积分10
7秒前
紫色奶萨完成签到,获得积分10
8秒前
8秒前
tree发布了新的文献求助10
9秒前
所所应助任性映秋采纳,获得10
9秒前
woodwood完成签到,获得积分10
9秒前
游标卡尺完成签到,获得积分10
10秒前
欣喜的秋莲完成签到,获得积分10
11秒前
斯文败类应助111舒舒采纳,获得10
11秒前
平淡映易完成签到,获得积分10
12秒前
YYJJHH完成签到,获得积分10
12秒前
DR完成签到,获得积分10
13秒前
游标卡尺发布了新的文献求助10
14秒前
14秒前
胡0515_完成签到,获得积分20
14秒前
14秒前
15秒前
xxfsx应助西行龟采纳,获得20
15秒前
zhizhzihzih发布了新的文献求助10
15秒前
16秒前
朝圣者发布了新的文献求助10
19秒前
猪猪侠发布了新的文献求助10
19秒前
20秒前
YY230512发布了新的文献求助10
20秒前
22秒前
22秒前
ding应助shuang采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289641
求助须知:如何正确求助?哪些是违规求助? 4441165
关于积分的说明 13826825
捐赠科研通 4323621
什么是DOI,文献DOI怎么找? 2373243
邀请新用户注册赠送积分活动 1368665
关于科研通互助平台的介绍 1332557