A review on structural development and recognition–localization methods for end-effector of fruit–vegetable picking robots

计算机科学 人工智能 机器人 特征(语言学) 适应性 单眼 自动化 计算机视觉 机器视觉 机器人末端执行器 领域(数学) 工程类 数学 纯数学 生物 机械工程 生态学 哲学 语言学
作者
Ziyue Li,Xianju Yuan,C.Y. Wang
出处
期刊:International Journal of Advanced Robotic Systems [SAGE]
卷期号:19 (3): 172988062211049-172988062211049 被引量:34
标识
DOI:10.1177/17298806221104906
摘要

The excellent performance of fruit and vegetable picking robots is usually contributed by the reasonable structure of end-effector and recognition–localization methods with high accuracy. As a result, efforts are focused on two aspects, and diverse structures of end-effector, target recognition methods as well as their combinations are yielded continuously. A good understanding for the working principle, advantages, limitations, and the adaptability in respective fields is helpful to design picking robots. Therefore, depending on different grasping ways, separating methods, structures, materials, and driving modes, main characteristics existing in traditional schemes will be depicted firstly. According to technical routes, advantages, potential applications, and challenges, underactuated manipulators and soft manipulators representing future development are then summarized systematically. Secondly, partial recognition and localization methods are also demonstrated. Specifically, current recognition manners adopting the single-feature, multi-feature fusion and deep learning are explained in view of their advantages, limitations, and successful instances. In the field of 3D localization, active vision based on the structured light, laser scanning, time of flight, and radar is reflected through the respective applications. Also, another 3D localization method called passive vision is also evaluated by advantages, limitations, the degree of automation, reconstruction effects, and the application scenario, such as monocular vision, binocular vision, and multiocular vision. Finally portrayed from structural development, recognition, and localization methods, it is possible to develop future end-effectors for fruit and vegetable picking robots with superior characteristics containing the less driving element, rigid–flexible–bionic coupling soft manipulators, simple control program, high efficiency, low damage, low cost, high versatility, and high recognition accuracy in all-season picking tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天开心完成签到 ,获得积分10
2秒前
5秒前
谷雨完成签到 ,获得积分10
5秒前
苗笑卉发布了新的文献求助10
10秒前
fishss完成签到 ,获得积分0
13秒前
ccmxigua完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
25秒前
纯真保温杯完成签到 ,获得积分10
34秒前
BowieHuang应助苗笑卉采纳,获得10
35秒前
小谭完成签到 ,获得积分10
37秒前
Orange应助tcheng采纳,获得10
43秒前
苗笑卉完成签到,获得积分10
48秒前
量子星尘发布了新的文献求助10
54秒前
Xzx1995完成签到 ,获得积分10
58秒前
风雨霖霖完成签到 ,获得积分10
1分钟前
1分钟前
tcheng发布了新的文献求助10
1分钟前
lht完成签到 ,获得积分10
1分钟前
black_cavalry完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
阳光醉山完成签到 ,获得积分10
1分钟前
笨笨完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ranj完成签到,获得积分10
1分钟前
蔚欢完成签到 ,获得积分10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
寄书长不达完成签到 ,获得积分10
2分钟前
失眠的笑翠完成签到 ,获得积分10
2分钟前
CY完成签到,获得积分10
2分钟前
77完成签到,获得积分10
2分钟前
开胃咖喱完成签到,获得积分10
2分钟前
changfox完成签到,获得积分10
2分钟前
gincle完成签到 ,获得积分10
2分钟前
高高的从波完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
guoguo1119完成签到 ,获得积分10
3分钟前
hyman1218完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539114
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566744
什么是DOI,文献DOI怎么找? 2503536
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1453020