已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data

遥感 分割 树(集合论) 随机森林 计算机科学 分水岭 高光谱成像 模式识别(心理学) 人工智能 图像分割 环境科学 数学 地理 机器学习 数学分析
作者
Haiming Qin,Weiqi Zhou,Yang Yao,Weimin Wang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:280: 113143-113143 被引量:151
标识
DOI:10.1016/j.rse.2022.113143
摘要

Accurate classification of individual tree species is essential for inventorying, managing, and protecting forest resources. Individual tree species classification in subtropical forests remains challenging as existing individual tree segmentation algorithms typically result in over-segmentation in subtropical broadleaf forests, in which tree crowns often have multiple peaks. In this study, we proposed a watershed-spectral-texture-controlled normalized cut (WST-Ncut) algorithm, and applied it to delineate individual trees in a subtropical broadleaf forest situated in Shenzhen City of southern China (114°23′28″E, 22°43′50″N). Using this algorithm, we first obtained accurate crown boundary of individual broadleaf trees. We then extracted different suites of vertical structural, spectral, and textural features from UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data, and used these features as inputs to a random forest classifier to classify 18 tree species. The results showed that the proposed WST-Ncut algorithm could reduce the over-segmentation of the watershed segmentation algorithm, and thereby was effective for delineating individual trees in subtropical broadleaf forests (Recall = 0.95, Precision = 0.86, and F-score = 0.91). Combining the structural, spectral, and textural features of individual trees provided the best tree species classification results, with overall accuracy reaching 91.8%, which was 10.2%, 13.6%, and 19.0% higher than that of using spectral, structural, and textural features alone, respectively. In addition, results showed that better individual tree segmentation would lead to higher accuracy of tree species classification, but the increase of the number of tree species would result in the decline of classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
4秒前
菜鸡游泳发布了新的文献求助10
5秒前
SiO2完成签到 ,获得积分0
6秒前
6秒前
君寻完成签到 ,获得积分10
7秒前
7秒前
7秒前
小蘑菇应助babalababa采纳,获得10
8秒前
8秒前
9秒前
中标发布了新的文献求助10
11秒前
11秒前
11秒前
公西凝芙发布了新的文献求助10
13秒前
15秒前
16秒前
16秒前
16秒前
Royal耗子完成签到,获得积分10
18秒前
haobhaobhaob发布了新的文献求助10
19秒前
20秒前
科研通AI5应助豆豆可采纳,获得10
20秒前
21秒前
Royal耗子发布了新的文献求助10
21秒前
慕青应助诺贝尔一直讲采纳,获得30
22秒前
公西凝芙完成签到,获得积分10
22秒前
科研通AI6应助弎夜采纳,获得30
22秒前
langqi发布了新的文献求助10
23秒前
Miya发布了新的文献求助30
23秒前
24秒前
haobhaobhaob完成签到,获得积分10
26秒前
凯蒂发布了新的文献求助10
27秒前
29秒前
哎健身发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
31秒前
momoni完成签到 ,获得积分10
31秒前
优秀的山芙关注了科研通微信公众号
32秒前
33秒前
豆豆可发布了新的文献求助10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542