Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data

遥感 分割 树(集合论) 随机森林 计算机科学 分水岭 高光谱成像 模式识别(心理学) 人工智能 图像分割 环境科学 数学 地理 机器学习 数学分析
作者
Haiming Qin,Weiqi Zhou,Yang Yao,Weimin Wang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:280: 113143-113143 被引量:192
标识
DOI:10.1016/j.rse.2022.113143
摘要

Accurate classification of individual tree species is essential for inventorying, managing, and protecting forest resources. Individual tree species classification in subtropical forests remains challenging as existing individual tree segmentation algorithms typically result in over-segmentation in subtropical broadleaf forests, in which tree crowns often have multiple peaks. In this study, we proposed a watershed-spectral-texture-controlled normalized cut (WST-Ncut) algorithm, and applied it to delineate individual trees in a subtropical broadleaf forest situated in Shenzhen City of southern China (114°23′28″E, 22°43′50″N). Using this algorithm, we first obtained accurate crown boundary of individual broadleaf trees. We then extracted different suites of vertical structural, spectral, and textural features from UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data, and used these features as inputs to a random forest classifier to classify 18 tree species. The results showed that the proposed WST-Ncut algorithm could reduce the over-segmentation of the watershed segmentation algorithm, and thereby was effective for delineating individual trees in subtropical broadleaf forests (Recall = 0.95, Precision = 0.86, and F-score = 0.91). Combining the structural, spectral, and textural features of individual trees provided the best tree species classification results, with overall accuracy reaching 91.8%, which was 10.2%, 13.6%, and 19.0% higher than that of using spectral, structural, and textural features alone, respectively. In addition, results showed that better individual tree segmentation would lead to higher accuracy of tree species classification, but the increase of the number of tree species would result in the decline of classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
127发布了新的文献求助10
刚刚
Timelapse应助清脆靳采纳,获得10
刚刚
chall应助学习采纳,获得10
1秒前
小兔叽完成签到 ,获得积分10
2秒前
2秒前
3秒前
小二发布了新的文献求助10
3秒前
核桃发布了新的文献求助10
3秒前
4秒前
胡亚楠完成签到,获得积分10
5秒前
清蒸可达鸭完成签到,获得积分10
5秒前
Gauss应助YZY采纳,获得30
6秒前
牛哥发布了新的文献求助10
7秒前
拉手刹打方向完成签到,获得积分10
7秒前
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
ZOE应助科研通管家采纳,获得50
9秒前
liuliu发布了新的文献求助10
9秒前
道衍先一完成签到,获得积分10
9秒前
思念发布了新的文献求助30
9秒前
Shu舒完成签到,获得积分10
10秒前
10秒前
jstagey完成签到,获得积分10
10秒前
纤指细轻捻完成签到 ,获得积分10
12秒前
michael发布了新的文献求助30
13秒前
牛哥完成签到,获得积分10
13秒前
yooo完成签到,获得积分20
14秒前
合适怡完成签到,获得积分10
15秒前
15秒前
烟花应助Zox采纳,获得10
15秒前
吴晨曦完成签到,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565888
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693715
捐赠科研通 4592950
什么是DOI,文献DOI怎么找? 2519814
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463370