亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data

遥感 分割 树(集合论) 随机森林 计算机科学 分水岭 高光谱成像 模式识别(心理学) 人工智能 图像分割 环境科学 数学 地理 机器学习 数学分析
作者
Haiming Qin,Weiqi Zhou,Yang Yao,Weimin Wang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:280: 113143-113143 被引量:166
标识
DOI:10.1016/j.rse.2022.113143
摘要

Accurate classification of individual tree species is essential for inventorying, managing, and protecting forest resources. Individual tree species classification in subtropical forests remains challenging as existing individual tree segmentation algorithms typically result in over-segmentation in subtropical broadleaf forests, in which tree crowns often have multiple peaks. In this study, we proposed a watershed-spectral-texture-controlled normalized cut (WST-Ncut) algorithm, and applied it to delineate individual trees in a subtropical broadleaf forest situated in Shenzhen City of southern China (114°23′28″E, 22°43′50″N). Using this algorithm, we first obtained accurate crown boundary of individual broadleaf trees. We then extracted different suites of vertical structural, spectral, and textural features from UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data, and used these features as inputs to a random forest classifier to classify 18 tree species. The results showed that the proposed WST-Ncut algorithm could reduce the over-segmentation of the watershed segmentation algorithm, and thereby was effective for delineating individual trees in subtropical broadleaf forests (Recall = 0.95, Precision = 0.86, and F-score = 0.91). Combining the structural, spectral, and textural features of individual trees provided the best tree species classification results, with overall accuracy reaching 91.8%, which was 10.2%, 13.6%, and 19.0% higher than that of using spectral, structural, and textural features alone, respectively. In addition, results showed that better individual tree segmentation would lead to higher accuracy of tree species classification, but the increase of the number of tree species would result in the decline of classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖胖猪完成签到,获得积分10
8秒前
xixiazhiwang完成签到 ,获得积分10
17秒前
27秒前
牧野牧发布了新的文献求助10
33秒前
小蘑菇应助科研通管家采纳,获得10
41秒前
牧野牧完成签到,获得积分10
50秒前
ljl86400完成签到,获得积分10
54秒前
56秒前
Owen应助Dingding采纳,获得10
1分钟前
小jie发布了新的文献求助10
1分钟前
12完成签到 ,获得积分10
1分钟前
小jie完成签到,获得积分10
1分钟前
ajing完成签到,获得积分10
1分钟前
小二郎应助小jie采纳,获得10
1分钟前
OhHH完成签到 ,获得积分10
1分钟前
shier完成签到 ,获得积分10
1分钟前
2分钟前
浮游应助木子采纳,获得10
2分钟前
周炎发布了新的文献求助10
2分钟前
Chen完成签到 ,获得积分10
2分钟前
2分钟前
fft完成签到,获得积分10
2分钟前
狂野的衬衫完成签到,获得积分10
2分钟前
Dingding发布了新的文献求助10
2分钟前
dahua完成签到 ,获得积分10
3分钟前
3分钟前
程大学发布了新的文献求助10
3分钟前
Dingding关注了科研通微信公众号
3分钟前
程大学完成签到,获得积分10
3分钟前
程大学驳回了ZJX应助
3分钟前
3分钟前
思源应助fft采纳,获得10
4分钟前
yys发布了新的文献求助10
4分钟前
打打应助yys采纳,获得10
4分钟前
wearelulu完成签到,获得积分10
4分钟前
4分钟前
sjj发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
在水一方应助sjj采纳,获得10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5148266
求助须知:如何正确求助?哪些是违规求助? 4344641
关于积分的说明 13529679
捐赠科研通 4186621
什么是DOI,文献DOI怎么找? 2295762
邀请新用户注册赠送积分活动 1296179
关于科研通互助平台的介绍 1239953