Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data

遥感 分割 树(集合论) 随机森林 计算机科学 分水岭 高光谱成像 模式识别(心理学) 人工智能 图像分割 环境科学 数学 地理 机器学习 数学分析
作者
Haiming Qin,Weiqi Zhou,Yang Yao,Weimin Wang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:280: 113143-113143 被引量:192
标识
DOI:10.1016/j.rse.2022.113143
摘要

Accurate classification of individual tree species is essential for inventorying, managing, and protecting forest resources. Individual tree species classification in subtropical forests remains challenging as existing individual tree segmentation algorithms typically result in over-segmentation in subtropical broadleaf forests, in which tree crowns often have multiple peaks. In this study, we proposed a watershed-spectral-texture-controlled normalized cut (WST-Ncut) algorithm, and applied it to delineate individual trees in a subtropical broadleaf forest situated in Shenzhen City of southern China (114°23′28″E, 22°43′50″N). Using this algorithm, we first obtained accurate crown boundary of individual broadleaf trees. We then extracted different suites of vertical structural, spectral, and textural features from UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data, and used these features as inputs to a random forest classifier to classify 18 tree species. The results showed that the proposed WST-Ncut algorithm could reduce the over-segmentation of the watershed segmentation algorithm, and thereby was effective for delineating individual trees in subtropical broadleaf forests (Recall = 0.95, Precision = 0.86, and F-score = 0.91). Combining the structural, spectral, and textural features of individual trees provided the best tree species classification results, with overall accuracy reaching 91.8%, which was 10.2%, 13.6%, and 19.0% higher than that of using spectral, structural, and textural features alone, respectively. In addition, results showed that better individual tree segmentation would lead to higher accuracy of tree species classification, but the increase of the number of tree species would result in the decline of classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李月月给李月月的求助进行了留言
1秒前
姜jiang发布了新的文献求助10
1秒前
2秒前
木木木发布了新的文献求助10
2秒前
2秒前
梅竹发布了新的文献求助10
2秒前
菜菜发布了新的文献求助10
3秒前
明月完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
陈123发布了新的文献求助10
6秒前
7秒前
yym996完成签到 ,获得积分10
7秒前
张钊于给张钊于的求助进行了留言
8秒前
星辰大海应助木木木采纳,获得10
8秒前
kio发布了新的文献求助10
10秒前
随机的都是啥昵称完成签到 ,获得积分10
12秒前
菜菜完成签到,获得积分10
12秒前
晴天111给晴天111的求助进行了留言
13秒前
笑点低的咖啡完成签到,获得积分20
14秒前
赘婿应助z00采纳,获得10
15秒前
所所应助姜jiang采纳,获得10
15秒前
16秒前
16秒前
Xavier完成签到,获得积分10
19秒前
21秒前
Xavier发布了新的文献求助10
22秒前
洋子完成签到,获得积分20
22秒前
创不可贴完成签到,获得积分10
24秒前
洋子发布了新的文献求助10
25秒前
wik完成签到,获得积分10
25秒前
爱笑发布了新的文献求助10
26秒前
27秒前
西乡塘塘主完成签到,获得积分10
27秒前
刘菠萝完成签到 ,获得积分10
28秒前
28秒前
YISER完成签到,获得积分20
28秒前
呱啦呱啦完成签到,获得积分10
30秒前
我我我发布了新的文献求助10
30秒前
djnhappy给djnhappy的求助进行了留言
31秒前
小盛完成签到 ,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465550
求助须知:如何正确求助?哪些是违规求助? 4569781
关于积分的说明 14321124
捐赠科研通 4496282
什么是DOI,文献DOI怎么找? 2463209
邀请新用户注册赠送积分活动 1452179
关于科研通互助平台的介绍 1427336