Individual tree segmentation and tree species classification in subtropical broadleaf forests using UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data

遥感 分割 树(集合论) 随机森林 计算机科学 分水岭 高光谱成像 模式识别(心理学) 人工智能 图像分割 环境科学 数学 地理 机器学习 数学分析
作者
Haiming Qin,Weiqi Zhou,Yang Yao,Weimin Wang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:280: 113143-113143 被引量:128
标识
DOI:10.1016/j.rse.2022.113143
摘要

Accurate classification of individual tree species is essential for inventorying, managing, and protecting forest resources. Individual tree species classification in subtropical forests remains challenging as existing individual tree segmentation algorithms typically result in over-segmentation in subtropical broadleaf forests, in which tree crowns often have multiple peaks. In this study, we proposed a watershed-spectral-texture-controlled normalized cut (WST-Ncut) algorithm, and applied it to delineate individual trees in a subtropical broadleaf forest situated in Shenzhen City of southern China (114°23′28″E, 22°43′50″N). Using this algorithm, we first obtained accurate crown boundary of individual broadleaf trees. We then extracted different suites of vertical structural, spectral, and textural features from UAV-based LiDAR, hyperspectral, and ultrahigh-resolution RGB data, and used these features as inputs to a random forest classifier to classify 18 tree species. The results showed that the proposed WST-Ncut algorithm could reduce the over-segmentation of the watershed segmentation algorithm, and thereby was effective for delineating individual trees in subtropical broadleaf forests (Recall = 0.95, Precision = 0.86, and F-score = 0.91). Combining the structural, spectral, and textural features of individual trees provided the best tree species classification results, with overall accuracy reaching 91.8%, which was 10.2%, 13.6%, and 19.0% higher than that of using spectral, structural, and textural features alone, respectively. In addition, results showed that better individual tree segmentation would lead to higher accuracy of tree species classification, but the increase of the number of tree species would result in the decline of classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的航空完成签到,获得积分10
刚刚
忆枫发布了新的文献求助10
1秒前
1秒前
1秒前
a18336181581发布了新的文献求助10
2秒前
欣慰的白羊完成签到,获得积分10
2秒前
Hoo完成签到,获得积分10
3秒前
所所应助房天川采纳,获得10
4秒前
M1stake完成签到,获得积分10
4秒前
zhaoying发布了新的文献求助10
5秒前
高大草莓发布了新的文献求助10
5秒前
5秒前
无私的芹应助欣慰的白羊采纳,获得10
6秒前
烟花易冷完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
faustus完成签到,获得积分10
8秒前
咯咚发布了新的文献求助10
8秒前
大模型应助20050437采纳,获得10
9秒前
zss完成签到,获得积分10
9秒前
9秒前
Hunter1023完成签到,获得积分10
10秒前
胡不喜发布了新的文献求助100
10秒前
jiashan发布了新的文献求助10
11秒前
12秒前
12秒前
快乐吗猪完成签到 ,获得积分10
12秒前
12秒前
12秒前
cc发布了新的文献求助10
13秒前
zrx15986完成签到,获得积分10
14秒前
14秒前
14秒前
菜菜泽完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813