A blockchain based privacy-preserving federated learning scheme for Internet of Vehicles

计算机科学 同态加密 块链 计算机安全 上传 声誉 方案(数学) 加密 密文 互联网 云计算 万维网 操作系统 数学分析 社会学 数学 社会科学
作者
Naiyu Wang,Wenti Yang,Xiaodong Wang,Longfei Wu,Zhitao Guan,Xiaojiang Du,Mohsen Guizani
出处
期刊:Digital Communications and Networks [Elsevier]
卷期号:10 (1): 126-134 被引量:46
标识
DOI:10.1016/j.dcan.2022.05.020
摘要

The application of artificial intelligence technology in Internet of Vehicles (IoV) has attracted great research interests with the goal of enabling smart transportation and traffic management. Meanwhile, concerns have been raised over the security and privacy of the tons of traffic and vehicle data. In this regard, Federated Learning (FL) with privacy protection features is considered a highly promising solution. However, in the FL process, the server side may take advantage of its dominant role in model aggregation to steal sensitive information of users, while the client side may also upload malicious data to compromise the training of the global model. Most existing privacy-preserving FL schemes in IoV fail to deal with threats from both of these two sides at the same time. In this paper, we propose a Blockchain based Privacy-preserving Federated Learning scheme named BPFL, which uses blockchain as the underlying distributed framework of FL. We improve the Multi-Krum technology and combine it with the homomorphic encryption to achieve ciphertext-level model aggregation and model filtering, which can enable the verifiability of the local models while achieving privacy-preservation. Additionally, we develop a reputation-based incentive mechanism to encourage users in IoV to actively participate in the federated learning and to practice honesty. The security analysis and performance evaluations are conducted to show that the proposed scheme can meet the security requirements and improve the performance of the FL model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
san发布了新的文献求助10
1秒前
无水乙醚发布了新的文献求助10
1秒前
8y24dp发布了新的文献求助10
2秒前
冷静傲丝完成签到 ,获得积分10
2秒前
听风暖完成签到 ,获得积分10
2秒前
CC完成签到 ,获得积分10
3秒前
隐形曼青应助8y24dp采纳,获得10
7秒前
8秒前
io完成签到,获得积分10
8秒前
嘉博学长发布了新的文献求助20
9秒前
传奇3应助玻璃杯采纳,获得10
9秒前
9秒前
进击的王大宝完成签到,获得积分10
10秒前
10秒前
10秒前
123jjc发布了新的文献求助30
10秒前
LCct发布了新的文献求助10
13秒前
13秒前
13秒前
fancy发布了新的文献求助10
14秒前
15秒前
16秒前
裴小峰完成签到,获得积分20
18秒前
19秒前
123jjc完成签到,获得积分20
20秒前
拾一完成签到,获得积分10
20秒前
nn发布了新的文献求助10
21秒前
rain完成签到,获得积分10
21秒前
21秒前
老仙翁发布了新的文献求助10
21秒前
san完成签到,获得积分10
21秒前
老仙翁完成签到,获得积分10
25秒前
Chengcheng发布了新的文献求助10
26秒前
852应助nn采纳,获得10
26秒前
27秒前
28秒前
咯噔完成签到,获得积分10
28秒前
29秒前
嘉博学长完成签到,获得积分10
29秒前
youchao发布了新的文献求助10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292356
求助须知:如何正确求助?哪些是违规求助? 2928650
关于积分的说明 8438119
捐赠科研通 2600747
什么是DOI,文献DOI怎么找? 1419262
科研通“疑难数据库(出版商)”最低求助积分说明 660268
邀请新用户注册赠送积分活动 642921