阳极
材料科学
电池(电)
电解质
锂(药物)
热失控
电极
锂离子电池
发热
耐久性
纳米技术
复合材料
化学
功率(物理)
医学
物理
物理化学
量子力学
热力学
内分泌学
作者
Qing Liu,Meng Tao,Le Yu,Songtao Guo,Yunhuan Hu,Zhifang Liu,Xianluo Hu
标识
DOI:10.1002/smtd.202200380
摘要
Battery safety is vital to the application of lithium-ion batteries (LIBs), especially for high energy density cells applied in electric vehicles. As an anode material with high theoretical capacity and natural abundance, Si has received extensive attention for LIBs. However, it suffers from severe electrode pulverization during cycling due to large volume changes and an unstable solid electrolyte interphase (SEI), resulting in accelerated capacity fading and even safety hazards. Therefore, safe and long-term cycling of Si-based anodes, especially under high-temperature cycling, is highly challenging for state-of-the-art high-energy LIBs. The thermal behavior of SEI is crucial for a high safety battery as the decomposition of SEI is the first step in thermal runaway. Here, highly reversible and thermotolerant microsized Si anodes for safe LIBs are demonstrated. Comprehensive electrochemical/mechanical/thermochemical behaviors of the SEI are systematically investigated. The rational design of robust SEI endows the Si-based cells with long-term durability at elevated temperatures and superior thermal safety. This work paves the way for designing industrial-scale, low-cost, microsized Si anodes with applications in next-generation LIBs with high energy densities and high safety.
科研通智能强力驱动
Strongly Powered by AbleSci AI