Multi-objective optimization of hydrocyclone by combining mechanistic and data-driven models

水力旋流器 分类 响应面法 人工神经网络 多目标优化 数学优化 计算机科学 遗传算法 实验数据 算法 数学 人工智能 机器学习 物理 经典力学 统计
作者
Qing Ye,Peibo Duan,Shibo Kuang,Li Ji,Ruiping Zou,Aibing Yu
出处
期刊:Powder Technology [Elsevier BV]
卷期号:407: 117674-117674 被引量:26
标识
DOI:10.1016/j.powtec.2022.117674
摘要

This paper presents a cost-effective method to optimize hydrocyclones used for particle separation. It integrates a mechanistic model for data generation with data-driven models for prediction and optimization. The mechanistic model is based on a validated two-fluid model (TFM), and the data-driven models are the artificial neural network (ANN) and non-dominated sorting genetic algorithm II (NSGA-II). In this integration, the response surface methodology (RSM), coupled with the steepest ascent, is used to design the numerical experiments based on the TFM, aiming to achieve reliable prediction through limited numerical experiments or training data. The applicability of the proposed method is demonstrated by multi-variable and multi-objective optimization of hydrocyclone geometry to achieve low pressure drop and accurate separation, especially for fine particles. The optimization result is elucidated using the multiphase flows predicted by the TFM. • Mechanistic and data-driven models are integrated to optimize hydrocyclones. • Response surface methodology and steepest ascent are used to effect the integration. • The integrated method gives reliable optimization with limited numerical experiments. • Fine particle separation improves a lot by geometry optimization via this method. • The optimization results are elucidated using the predicted multiphase flows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang完成签到,获得积分10
2秒前
2秒前
默默完成签到 ,获得积分10
3秒前
4秒前
所所应助mkk采纳,获得10
6秒前
7秒前
量子星尘发布了新的文献求助150
7秒前
7秒前
8秒前
李爱国应助活力的友安采纳,获得10
8秒前
小二郎应助阴暗的小芋头采纳,获得10
9秒前
FancyShi发布了新的文献求助10
10秒前
传奇3应助孙小雨采纳,获得10
12秒前
wangjiale发布了新的文献求助10
12秒前
可爱山彤发布了新的文献求助10
13秒前
我是老大应助快乐冰激凌采纳,获得10
13秒前
14秒前
16秒前
17秒前
Sharif318完成签到,获得积分10
18秒前
请叫我湿人人完成签到,获得积分10
19秒前
FashionBoy应助细心的小天鹅采纳,获得10
19秒前
FashionBoy应助南有乔木采纳,获得10
21秒前
Miruto完成签到,获得积分10
21秒前
赘婿应助ttkx采纳,获得10
22秒前
zcg完成签到 ,获得积分10
23秒前
科目三应助浅暖采纳,获得10
24秒前
mkk完成签到,获得积分10
25秒前
小马甲应助大意的醉山采纳,获得10
25秒前
Mingdoc完成签到,获得积分10
25秒前
25秒前
26秒前
27秒前
CodeCraft应助thousandlong采纳,获得10
27秒前
快乐蛋挞完成签到,获得积分20
28秒前
28秒前
瘦瘦语蕊完成签到,获得积分10
29秒前
wangjiale完成签到,获得积分10
29秒前
Xumm完成签到 ,获得积分10
31秒前
虚心虾米发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959583
求助须知:如何正确求助?哪些是违规求助? 3505844
关于积分的说明 11126416
捐赠科研通 3237765
什么是DOI,文献DOI怎么找? 1789326
邀请新用户注册赠送积分活动 871669
科研通“疑难数据库(出版商)”最低求助积分说明 802963