Storage degradation mechanism of layered Ni-rich oxide cathode material LiNi0.8Co0.1Mn0.1O2

锂(药物) 非阻塞I/O 材料科学 阴极 化学工程 降级(电信) 氧化物 图层(电子) 惰性气体 杂质 电化学 扩散 化学 冶金 电极 复合材料 物理化学 计算机科学 物理 工程类 电信 医学 生物化学 有机化学 热力学 内分泌学 催化作用
作者
Mingru Su,Yi-Chang Chen,Hongjia Liu,Jinlin Li,Kai Fu,Yu Zhou,Aichun Dou,Yunjian Liu
出处
期刊:Electrochimica Acta [Elsevier BV]
卷期号:422: 140559-140559 被引量:29
标识
DOI:10.1016/j.electacta.2022.140559
摘要

With advantages such as high specific capacity and low cost, Ni-rich layered oxides are considered to be ideal cathode materials for power batteries. However, due to the high sensitivity of materials to air, structural degradation occurs during transportation and storage, resulting in the formation of an impurity layer. The degradation of the structure will weaken the comprehensive properties of Ni-rich cathode materials. The impurity layer will bring difficulties to the subsequent electrode manufacturing process, which seriously limits the practical application of Ni-rich materials. Therefore, it is particularly important to explore the storage decline mechanism of Ni-rich materials. Herein, the decay mechanism of structure and electrochemical properties of LiNi0.8Co0.1Mn0.1O2 materials after storage at room temperature and high humidity and high-temperature and humidity were studied. It is found that the instability of Ni3+ leads to the appearance of NiO rock salt phase on the surface of the material, accompanied by the formation of reactive oxygen species. Lithium and reactive oxygen species in the material react with H2O and CO2 in the air to form surface residual lithium compounds. The formation of the inert NiO layer and residual lithium compounds hinders the diffusion kinetics of Li+, resulting in serious capacity loss. During the high-temperature storage process, the material forms thicker residual lithium compounds, which aggravates the decay process. After 28 days of high-temperature storage, a residual lithium compound layer of about 7 nm thickness was formed, which seriously hindered the transmission of Li+. This study is helpful to deeply understand the storage failure behavior of Ni-rich cathode materials and promote the large-scale industrial production and application of Ni-rich cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
INGRID完成签到,获得积分10
刚刚
mawenxiu完成签到,获得积分10
刚刚
大个应助积极的甜瓜采纳,获得10
刚刚
呵呵呵呵完成签到,获得积分10
2秒前
INGRID发布了新的文献求助10
3秒前
WYN发布了新的文献求助10
3秒前
4秒前
研友_rLmNXn发布了新的文献求助10
4秒前
万能图书馆应助IvyLee采纳,获得10
5秒前
HCB1完成签到,获得积分10
6秒前
啦啦啦啦啦完成签到,获得积分10
6秒前
7秒前
xiaoyu发布了新的文献求助10
7秒前
香蕉海白完成签到 ,获得积分10
8秒前
woommoow完成签到,获得积分10
8秒前
9秒前
cyw完成签到,获得积分20
10秒前
11秒前
NexusExplorer应助草莓灰灰采纳,获得10
12秒前
善学以致用应助ddli采纳,获得10
13秒前
Pucky完成签到,获得积分20
13秒前
叶道之完成签到,获得积分10
14秒前
14秒前
SciGPT应助无语的寒天采纳,获得10
15秒前
niuniu发布了新的文献求助30
15秒前
桐桐应助星宇采纳,获得10
15秒前
研友_ZGjDYn完成签到,获得积分10
16秒前
lily完成签到 ,获得积分10
16秒前
苔苔发布了新的文献求助10
17秒前
ding应助叶道之采纳,获得10
18秒前
18秒前
19秒前
Rigel完成签到,获得积分20
19秒前
20秒前
20秒前
迅速向日葵完成签到,获得积分20
21秒前
vampirell完成签到,获得积分0
21秒前
要减肥的砖头完成签到,获得积分10
21秒前
huyux发布了新的文献求助10
21秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993