Multi-view learning for hyperspectral image classification: An overview

高光谱成像 计算机科学 人工智能 模式识别(心理学) 上下文图像分类 对象(语法) 空间分析 互动性 机器学习 数据挖掘 图像(数学) 遥感 地理 多媒体
作者
Xuefei Li,Baodi Liu,Kai Zhang,Honglong Chen,Weijia Cao,Weifeng Liu,Dapeng Tao
出处
期刊:Neurocomputing [Elsevier]
卷期号:500: 499-517 被引量:27
标识
DOI:10.1016/j.neucom.2022.05.093
摘要

Hyperspectral images (HSI) are obtained from hyperspectral imaging sensors to capture the object’s information in hundreds of spectral bands. However, how to make full advantage of spatial and spectral information from a large number of spectral bands to improve the performance of HSI classification remains an open question. Many HSI classification works have recently been reported by employing multi-view learning (MVL) algorithms and have achieved promising results. Generally, MVL based HSI classification can be divided into three steps, i.e. (1) multi-view construction, (2) interactivity enhanced, and (3) multi-view fusion. This paper presents a review of MVL methods in HSI classification based on the general steps of MVL. Specifically, multi-view construction builds various representations from the raw HSI data as different views to adapt to an MVL setup. Secondly, interactivity enhanced aims to interact with different view features, so that the current view contains information from other views and to achieve a pre-fusion effect. Finally, multi-view fusion uses different fusion methods to combine multiple views and classify HSIs using complementary information between the views. In addition, we analyzed and discussed separately representative approaches in each step and their characteristics, and introduced some of the most advanced work. Overall, this survey aims to provide an insightful overview of developments in MVL in HSI classification and help researchers identify its future trends.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助liweisdau采纳,获得10
5秒前
大美女完成签到,获得积分10
7秒前
robin_1217完成签到,获得积分10
11秒前
小小二完成签到,获得积分10
12秒前
丰富青文发布了新的文献求助10
13秒前
13秒前
胖蛋蛋蛋完成签到,获得积分10
14秒前
冷酷太清完成签到,获得积分10
16秒前
马佳音完成签到 ,获得积分10
17秒前
科研通AI6.2应助xcz采纳,获得10
18秒前
UY完成签到,获得积分10
20秒前
20秒前
王啦啦发布了新的文献求助10
22秒前
23秒前
23秒前
zqs完成签到,获得积分10
24秒前
mengdream完成签到 ,获得积分10
26秒前
自觉雨文发布了新的文献求助10
27秒前
xx发布了新的文献求助10
27秒前
30秒前
好运连连好运完成签到,获得积分10
33秒前
33秒前
标致小翠完成签到,获得积分10
33秒前
Echo完成签到 ,获得积分10
34秒前
34秒前
香蕉书兰完成签到,获得积分10
36秒前
聪明的千青完成签到,获得积分20
37秒前
小胖发布了新的文献求助10
37秒前
yuyu应助悲惨药学狗采纳,获得10
39秒前
40秒前
稳重乌冬面完成签到 ,获得积分10
40秒前
48秒前
NPUerLin完成签到,获得积分10
48秒前
xcz发布了新的文献求助10
49秒前
51秒前
51秒前
56秒前
岳岳岳发布了新的文献求助10
56秒前
bkagyin应助科研通管家采纳,获得10
57秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Using a Non-Equivalent Control Group Design in Educational Research 200
Public Health, Personal Health and Pills: Drug Entanglements and Pharmaceuticalised Governance 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5868072
求助须知:如何正确求助?哪些是违规求助? 6437884
关于积分的说明 15657694
捐赠科研通 4983390
什么是DOI,文献DOI怎么找? 2687484
邀请新用户注册赠送积分活动 1630166
关于科研通互助平台的介绍 1588201