亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constructing tongue coating recognition model using deep transfer learning to assist syndrome diagnosis and its potential in noninvasive ethnopharmacological evaluation

涂层 卷积神经网络 舌头 2019年冠状病毒病(COVID-19) 人工智能 计算机科学 深度学习 医学 机器学习 疾病 模式识别(心理学) 病理 材料科学 传染病(医学专业) 复合材料
作者
Xu Wang,Xinrong Wang,Yanni Lou,Jingwei Liu,Shirui Huo,Xiaohan Pang,Weilu Wang,Chaoyong Wu,Yufeng Chen,Yu Chen,Aiping Chen,Fukun Bi,Weiying Xing,Qi Deng,Jia Li,Jianxin Chen
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:285: 114905-114905 被引量:21
标识
DOI:10.1016/j.jep.2021.114905
摘要

Tongue coating has been used as an effective signature of health in traditional Chinese medicine (TCM). The level of greasy coating closely relates to the strength of dampness or pathogenic qi in TCM theory. Previous empirical studies and our systematic review have shown the relation between greasy coating and various diseases, including gastroenteropathy, coronary heart disease, and coronavirus disease 2019 (COVID-19). However, the objective and intelligent greasy coating and related diseases recognition methods are still lacking. The construction of the artificial intelligent tongue recognition models may provide important syndrome diagnosis and efficacy evaluation methods, and contribute to the understanding of ethnopharmacological mechanisms based on TCM theory.The present study aimed to develop an artificial intelligent model for greasy tongue coating recognition and explore its application in COVID-19.Herein, we developed greasy tongue coating recognition networks (GreasyCoatNet) using convolutional neural network technique and a relatively large (N = 1486) set of tongue images from standard devices. Tests were performed using both cross-validation procedures and a new dataset (N = 50) captured by common cameras. Besides, the accuracy and time efficiency comparisons between the GreasyCoatNet and doctors were also conducted. Finally, the model was transferred to recognize the greasy coating level of COVID-19.The overall accuracy in 3-level greasy coating classification with cross-validation was 88.8% and accuracy on new dataset was 82.0%, indicating that GreasyCoatNet can obtain robust greasy coating estimates from diverse datasets. In addition, we conducted user study to confirm that our GreasyCoatNet outperforms TCM practitioners, yet only consuming roughly 1% of doctors' examination time. Critically, we demonstrated that GreasyCoatNet, along with transfer learning, can construct more proper classifier of COVID-19, compared to directly training classifier on patient versus control datasets. We, therefore, derived a disease-specific deep learning network by finetuning the generic GreasyCoatNet.Our framework may provide an important research paradigm for differentiating tongue characteristics, diagnosing TCM syndrome, tracking disease progression, and evaluating intervention efficacy, exhibiting its unique potential in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小凯完成签到 ,获得积分10
3秒前
3秒前
chxxxxx发布了新的文献求助30
8秒前
franklin发布了新的文献求助10
10秒前
万能图书馆应助chxxxxx采纳,获得10
14秒前
微笑语柳完成签到,获得积分10
16秒前
NexusExplorer应助franklin采纳,获得10
19秒前
24秒前
31秒前
40秒前
elle发布了新的文献求助10
44秒前
充电宝应助elle采纳,获得10
54秒前
elle完成签到,获得积分20
1分钟前
franklin完成签到,获得积分20
1分钟前
YYYY完成签到 ,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
1分钟前
小学生的练习簿完成签到,获得积分10
2分钟前
2分钟前
xx发布了新的文献求助10
2分钟前
2分钟前
2分钟前
小马甲应助泡面小猪采纳,获得10
3分钟前
蟹黄小笼包完成签到,获得积分10
3分钟前
3分钟前
LZL完成签到,获得积分10
4分钟前
Akim应助weining采纳,获得10
4分钟前
4分钟前
hyhyhyhy发布了新的文献求助10
4分钟前
weining发布了新的文献求助10
4分钟前
楠茸完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
泡面小猪发布了新的文献求助10
5分钟前
www发布了新的文献求助10
5分钟前
俭朴蜜蜂完成签到 ,获得积分10
5分钟前
www完成签到,获得积分20
5分钟前
fendy完成签到,获得积分0
5分钟前
打打应助科研通管家采纳,获得30
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137011
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784091
捐赠科研通 2444041
什么是DOI,文献DOI怎么找? 1299627
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989