亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Complex image background segmentation for cable force estimation of urban bridges with drone‐captured video and deep learning

无人机 分割 稳健性(进化) 计算机科学 人工智能 深度学习 桥(图论) 桥接(联网) 振动 结构健康监测 工程类 运动估计 计算机视觉 模拟 结构工程 声学 基因 物理 内科学 生物 医学 生物化学 化学 遗传学 计算机网络
作者
Cheng Zhang,Yongding Tian,Jian Zhang
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:29 (4) 被引量:30
标识
DOI:10.1002/stc.2910
摘要

Structural Control and Health MonitoringVolume 29, Issue 4 e2910 RESEARCH ARTICLE Complex image background segmentation for cable force estimation of urban bridges with drone-captured video and deep learning Cheng Zhang, Cheng Zhang orcid.org/0000-0001-9646-937X School of Civil Engineering, Southeast University, Nanjing, ChinaSearch for more papers by this authorYongding Tian, Yongding Tian orcid.org/0000-0002-6320-3388 School of Civil Engineering, Southeast University, Nanjing, China School of Civil Engineering, Southwest Jiaotong University, Chengdu, ChinaSearch for more papers by this authorJian Zhang, Corresponding Author Jian Zhang [email protected] orcid.org/0000-0002-9129-255X School of Civil Engineering, Southeast University, Nanjing, China Correspondence Jian Zhang, School of Civil Engineering, Southeast University, 210096 Nanjing, China. Email: [email protected]Search for more papers by this author Cheng Zhang, Cheng Zhang orcid.org/0000-0001-9646-937X School of Civil Engineering, Southeast University, Nanjing, ChinaSearch for more papers by this authorYongding Tian, Yongding Tian orcid.org/0000-0002-6320-3388 School of Civil Engineering, Southeast University, Nanjing, China School of Civil Engineering, Southwest Jiaotong University, Chengdu, ChinaSearch for more papers by this authorJian Zhang, Corresponding Author Jian Zhang [email protected] orcid.org/0000-0002-9129-255X School of Civil Engineering, Southeast University, Nanjing, China Correspondence Jian Zhang, School of Civil Engineering, Southeast University, 210096 Nanjing, China. Email: [email protected]Search for more papers by this author First published: 08 December 2021 https://doi.org/10.1002/stc.2910 Funding information: Key R&D Program of Jiangsu Province, Grant/Award Number: BE2020094; National Science Foundation of China, Grant/Award Number: 51778134; National Key Research and Development Program of China, Grant/Award Number: 2019YFC1511105 Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Summary Drone-assisted structural health monitoring has aroused extensive attention due to its high mobility and low cost. However, drone motion and complex image backgrounds severely impede its application in the cable force measurement of urban bridges. To fill this research gap, this paper proposed a deep learning-based complex background segmentation approach for cable force estimation of urban bridges from the drone-captured video. The main contribution of this article includes two aspects: (1) A pre-trained fully convolutional network (FCN) model was first adopted to identify bridge cables from drone-captured video and further to extract sub-pixel-level displacement using line segment detection (LSD) algorithm, and (2) an empirical mode decomposition algorithm was employed for extracting the vibration signal of bridge cables by eliminating the effect of drone motion on measured dynamic displacement. Finally, natural frequencies of bridge cables were obtained by performing Fourier analysis on extracted cable vibration and further adopted for cable force estimation. The effectiveness and robustness of the proposed method have been successfully verified by field testing of an urban cable-stayed footbridge. Estimated cable forces using the proposed method are consistent with the traditional contact-type measurements and design values, demonstrating the potential of this method for applying into rapid cable force estimation of numerous urban bridges. Volume29, Issue4April 2022e2910 RelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助忧郁紫翠采纳,获得10
3秒前
5秒前
Aimee完成签到 ,获得积分10
10秒前
人谷完成签到 ,获得积分10
11秒前
打打应助研友_ZzrWKZ采纳,获得10
26秒前
zho发布了新的文献求助10
29秒前
33秒前
研友_ZzrWKZ发布了新的文献求助10
40秒前
ShowMaker发布了新的文献求助30
49秒前
玛琳卡迪马完成签到,获得积分10
53秒前
万能图书馆应助小树苗采纳,获得10
58秒前
1分钟前
1分钟前
忧郁紫翠发布了新的文献求助10
1分钟前
流白完成签到 ,获得积分10
1分钟前
桐桐应助hh采纳,获得10
1分钟前
HJJHJH发布了新的文献求助10
1分钟前
搜集达人应助HJJHJH采纳,获得10
1分钟前
wanci应助忧郁紫翠采纳,获得10
1分钟前
1分钟前
九日橙完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Lorain完成签到,获得积分10
1分钟前
忧郁紫翠完成签到,获得积分20
1分钟前
1分钟前
钱德清发布了新的文献求助10
1分钟前
在水一方应助科研通管家采纳,获得30
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
肖笑笑发布了新的文献求助10
1分钟前
1分钟前
钱德清完成签到,获得积分20
1分钟前
青儿发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671207
求助须知:如何正确求助?哪些是违规求助? 3228106
关于积分的说明 9778486
捐赠科研通 2938349
什么是DOI,文献DOI怎么找? 1609872
邀请新用户注册赠送积分活动 760478
科研通“疑难数据库(出版商)”最低求助积分说明 735990