High interfacial thermal conductance across heterogeneous GaN/graphene interface

石墨烯 材料科学 光电子学 氮化镓 异质结 声子 宽禁带半导体 热导率 结温 二极管 数码产品 纳米技术 图层(电子) 热的 凝聚态物理 复合材料 化学 气象学 物理化学 物理
作者
Dan Wu,Hua Ding,Zhi-Qiang Fan,Pin-Zhen Jia,Hai-Qing Xie,Xue-Kun Chen
出处
期刊:Applied Surface Science [Elsevier]
卷期号:581: 152344-152344 被引量:36
标识
DOI:10.1016/j.apsusc.2021.152344
摘要

Gallium nitride (GaN)-based high-electron-mobility transistors (HEMTs) have attracted significant research attention because of their high-power and high-frequency electronics applications such as 5G wireless networks and light-emitting diodes. Meanwhile, the output power density of these HEMTs is particularly high, and strong Joule self-heating hot spots formed at the near-junction seriously restricts device performance and reliability. Hence, heat removal is in urgent demand for GaN-based HEMTs. Multilayer graphene, featuring high thermal conductivity and being easily prepared, is of interest for integration with GaN to improve the device thermal management. In this work, we have investigated the interfacial thermal conductance (ITC) across GaN/graphene interface using nonequilibrium molecular dynamics simulations. The results show that a 0.6% point-defect concentration results in 2.4-fold enhancement in ITC. Moreover, the ITC value can be increased up to 520.7 MWm−2 K−1 by applying ∼ 1GPa cross-plane pressure, which is close to the measurement result for epitaxially grown GaN/ZnO interface. Detailed analyses of vibrational spectra and spectral phonon transmission are performed to help understand the significant enhancement of ITC. Furthermore, the ITC could be also regulated by the external temperature and h-BN intercalation. Our findings presented here provide important guidelines for solving the thermal management issue in GaN-based electronic devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王梦秋发布了新的文献求助10
刚刚
清晨发布了新的文献求助10
刚刚
刚刚
白青完成签到,获得积分10
刚刚
1秒前
粗暴的又槐完成签到,获得积分20
1秒前
Captainhana发布了新的文献求助10
1秒前
2秒前
yyy完成签到 ,获得积分10
3秒前
4秒前
香菜完成签到,获得积分10
4秒前
小二郎应助lhy采纳,获得10
5秒前
细小完成签到,获得积分10
6秒前
FashionBoy应助zimo采纳,获得10
6秒前
6秒前
今后应助kid采纳,获得10
7秒前
7秒前
Brown完成签到,获得积分10
8秒前
zzz发布了新的文献求助10
8秒前
xiaoliu完成签到,获得积分10
9秒前
9秒前
10秒前
dglyl发布了新的文献求助10
10秒前
科研通AI6应助lc采纳,获得10
11秒前
12秒前
自觉的丹珍完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
崽崽发布了新的文献求助10
15秒前
无花果应助背后的广山采纳,获得10
15秒前
共享精神应助小白采纳,获得10
15秒前
15秒前
ZL完成签到,获得积分10
16秒前
淡然冬灵发布了新的文献求助10
16秒前
营长完成签到 ,获得积分10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858