Interactive defect quantification through extended reality

计算机科学 可视化 覆盖 计算机视觉 工作流程 管道(软件) 像素 人工智能 计算机图形学(图像) 虚拟现实 增强现实 数据库 程序设计语言
作者
Zaid Abbas Al‐Sabbag,Chul Min Yeum,Sriram Narasimhan
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:51: 101473-101473 被引量:9
标识
DOI:10.1016/j.aei.2021.101473
摘要

In this study, a new visual inspection method that can interactively detect and quantify structural defects using an Extended Reality (XR) device (headset) is proposed. The XR device, which is at the core of this method, supports an interactive environment using a holographic overlay of graphical information on the spatial environment and physical objects being inspected. By leveraging this capability, a novel XR-supported inspection pipeline, called eXtended Reality-based Inspection and Visualization (XRIV), is developed. Key tasks supported by this method include detecting visual damage from sensory data acquired by the XR device, estimating its size, and visualizing (overlaying) information on the spatial environment. The crucial step of real-time interactive segmentation—detection and pixel-wise damage boundary refinement—is achieved using a feature Back-propagating Refinement Scheme (f-BRS) algorithm. Then, a ray-casting algorithm is applied to back-project the 2D image pixel coordinates of the damage region to their 3D world coordinates for damage area quantification in real-world (physical) units. Finally, the area information is overlaid and anchored to the scene containing damage for visualization and documentation. The performance of XRIV is experimentally demonstrated by measuring surface structural damage of an in-service concrete bridge with less than 10% errors for two different test cases, and image processing latency of 2–3 s (or 0.5 s per seed point) from f-BRS. The proposed XRIV pipeline underscores the advantages of real-time interaction between expert users and the XR device through immersive visualization so that a human–machine collaborative workflow can be established to obtain better inspection outcomes in terms of accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
moji发布了新的文献求助10
1秒前
裴敏发布了新的文献求助10
1秒前
YANA完成签到,获得积分10
2秒前
3秒前
CipherSage应助正直凌文采纳,获得10
3秒前
谦让幻枫发布了新的文献求助10
3秒前
4秒前
enshun发布了新的文献求助10
4秒前
liu完成签到,获得积分10
5秒前
sh131发布了新的文献求助10
5秒前
香蕉海白完成签到 ,获得积分10
5秒前
Fan_发布了新的文献求助10
8秒前
精明雁露发布了新的文献求助10
8秒前
54不得了完成签到,获得积分10
8秒前
灰鸽舞完成签到 ,获得积分10
9秒前
123完成签到,获得积分20
9秒前
kk完成签到,获得积分20
9秒前
10秒前
zyzhnu完成签到,获得积分10
10秒前
cora发布了新的文献求助10
10秒前
HMM完成签到,获得积分10
10秒前
冷彬完成签到,获得积分10
11秒前
陈谨完成签到 ,获得积分10
12秒前
Orange应助Cluneeeee采纳,获得10
12秒前
13秒前
愤怒的稀发布了新的文献求助10
14秒前
小尾巴完成签到,获得积分10
14秒前
机灵夜云完成签到,获得积分10
15秒前
汉堡包应助Hum6le采纳,获得10
15秒前
酷波er应助gg2002采纳,获得10
16秒前
酷酷的紫南完成签到 ,获得积分10
16秒前
weilei完成签到,获得积分10
17秒前
ZhangZaikuan完成签到,获得积分10
17秒前
19秒前
20秒前
陈花蕾完成签到 ,获得积分10
20秒前
ding应助愤怒的稀采纳,获得10
20秒前
111完成签到,获得积分10
20秒前
lagom完成签到,获得积分10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954299
求助须知:如何正确求助?哪些是违规求助? 3500338
关于积分的说明 11099026
捐赠科研通 3230828
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869840
科研通“疑难数据库(出版商)”最低求助积分说明 801651