TNSNet: Thyroid nodule segmentation in ultrasound imaging using soft shape supervision

计算机科学 分割 人工智能 甲状腺结节 计算机视觉 深度学习 可视化 反褶积 结核(地质) 模式识别(心理学) 图像分割 路径(计算) 散斑噪声 人工神经网络 斑点图案 甲状腺 医学 算法 古生物学 内科学 生物 程序设计语言
作者
Jiawei Sun,Chunying Li,Zhengda Lu,Mu He,Tong Zhao,Xiaoqin Li,Liugang Gao,Kai Xie,Tao Lin,Jianfeng Sui,Qianyi Xi,Fan Zhang,Xinye Ni
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:215: 106600-106600 被引量:41
标识
DOI:10.1016/j.cmpb.2021.106600
摘要

Thyroid nodules are a common disorder of the endocrine system. Segmentation of thyroid nodules on ultrasound images is an important step in the evaluation and diagnosis of nodules and an initial step in computer-aided diagnostic systems. The accuracy and consistency of segmentation remain a challenge due to the low contrast, speckle noise, and low resolution of ultrasound images. Therefore, the study of deep learning-based algorithms for thyroid nodule segmentation is important. This study utilizes soft shape supervision to improve the performance of detection and segmentation of boundaries of nodules. Soft shape supervision can emphasize the boundary features and assist the network in segmenting nodules accurately.We propose a dual-path convolution neural network, including region and shape paths, which use DeepLabV3+ as the backbone. Soft shape supervision blocks are inserted between the two paths to implement cross-path attention mechanisms. The blocks enhance the representation of shape features and add them to the region path as auxiliary information. Thus, the network can accurately detect and segment thyroid nodules.We collect 3786 ultrasound images of thyroid nodules to train and test our network. Compared with the ground truth, the test results achieve an accuracy of 95.81% and a DSC of 85.33. The visualization results also suggest that the network has learned clear and accurate boundaries of the nodules. The evaluation metrics and visualization results demonstrate the superior segmentation performance of the network to other classical deep learning-based networks.The proposed dual-path network can accurately realize automatic segmentation of thyroid nodules on ultrasound images. It can also be used as an initial step in computer-aided diagnosis. It shows superior performance to other classical methods and demonstrates the potential for accurate segmentation of nodules in clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Zoe采纳,获得10
1秒前
Darling发布了新的文献求助10
2秒前
爆米花应助ents采纳,获得10
2秒前
NexusExplorer应助优秀的枕头采纳,获得10
2秒前
无辜的鼠标完成签到,获得积分10
2秒前
3秒前
meatball1982发布了新的文献求助10
3秒前
次年完成签到,获得积分20
4秒前
缥缈的松鼠完成签到 ,获得积分10
6秒前
7秒前
田建设发布了新的文献求助10
8秒前
科研通AI6.1应助看文献了采纳,获得10
10秒前
lw完成签到,获得积分10
12秒前
p65完成签到,获得积分10
14秒前
从你的全世界路过完成签到,获得积分20
16秒前
16秒前
喜悦的清炎完成签到 ,获得积分10
17秒前
FashionBoy应助周至采纳,获得10
17秒前
他们叫我小伟完成签到 ,获得积分10
20秒前
20秒前
玺青一生完成签到 ,获得积分10
20秒前
不弱小妖完成签到,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
wx发布了新的文献求助30
22秒前
xdm完成签到,获得积分10
23秒前
Mia2发布了新的文献求助20
23秒前
23秒前
空白完成签到 ,获得积分10
24秒前
qizhang发布了新的文献求助10
26秒前
ghpi完成签到,获得积分10
26秒前
ents完成签到,获得积分10
26秒前
26秒前
26秒前
ttrr完成签到,获得积分10
28秒前
29秒前
量子星尘发布了新的文献求助30
29秒前
29秒前
29秒前
聪明海云发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735045
求助须知:如何正确求助?哪些是违规求助? 5358060
关于积分的说明 15328419
捐赠科研通 4879484
什么是DOI,文献DOI怎么找? 2621957
邀请新用户注册赠送积分活动 1571152
关于科研通互助平台的介绍 1527932