TNSNet: Thyroid nodule segmentation in ultrasound imaging using soft shape supervision

计算机科学 分割 人工智能 甲状腺结节 计算机视觉 深度学习 可视化 反褶积 结核(地质) 模式识别(心理学) 图像分割 路径(计算) 散斑噪声 人工神经网络 斑点图案 甲状腺 医学 算法 古生物学 内科学 生物 程序设计语言
作者
Jiawei Sun,Chunying Li,Zhengda Lu,Mu He,Tong Zhao,Xiaoqin Li,Liugang Gao,Kai Xie,Tao Lin,Jianfeng Sui,Qianyi Xi,Fan Zhang,Xinye Ni
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:215: 106600-106600 被引量:41
标识
DOI:10.1016/j.cmpb.2021.106600
摘要

Thyroid nodules are a common disorder of the endocrine system. Segmentation of thyroid nodules on ultrasound images is an important step in the evaluation and diagnosis of nodules and an initial step in computer-aided diagnostic systems. The accuracy and consistency of segmentation remain a challenge due to the low contrast, speckle noise, and low resolution of ultrasound images. Therefore, the study of deep learning-based algorithms for thyroid nodule segmentation is important. This study utilizes soft shape supervision to improve the performance of detection and segmentation of boundaries of nodules. Soft shape supervision can emphasize the boundary features and assist the network in segmenting nodules accurately.We propose a dual-path convolution neural network, including region and shape paths, which use DeepLabV3+ as the backbone. Soft shape supervision blocks are inserted between the two paths to implement cross-path attention mechanisms. The blocks enhance the representation of shape features and add them to the region path as auxiliary information. Thus, the network can accurately detect and segment thyroid nodules.We collect 3786 ultrasound images of thyroid nodules to train and test our network. Compared with the ground truth, the test results achieve an accuracy of 95.81% and a DSC of 85.33. The visualization results also suggest that the network has learned clear and accurate boundaries of the nodules. The evaluation metrics and visualization results demonstrate the superior segmentation performance of the network to other classical deep learning-based networks.The proposed dual-path network can accurately realize automatic segmentation of thyroid nodules on ultrasound images. It can also be used as an initial step in computer-aided diagnosis. It shows superior performance to other classical methods and demonstrates the potential for accurate segmentation of nodules in clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33猫完成签到 ,获得积分10
1秒前
英姑应助好运来采纳,获得10
1秒前
1秒前
张世瑞发布了新的文献求助10
1秒前
迷路秋荷完成签到,获得积分10
1秒前
2秒前
Hello应助勇敢牛牛采纳,获得10
2秒前
IL556完成签到 ,获得积分10
3秒前
八月完成签到,获得积分10
4秒前
李zhu完成签到,获得积分20
4秒前
5秒前
领导范儿应助迷路秋荷采纳,获得10
5秒前
ZhaoW完成签到,获得积分10
5秒前
随机完成签到,获得积分10
5秒前
曹梓轩发布了新的文献求助10
5秒前
清新的宛丝完成签到,获得积分10
5秒前
AUGKING27完成签到 ,获得积分10
7秒前
7秒前
詹慧子完成签到,获得积分20
7秒前
河边草发布了新的文献求助10
7秒前
焱鑫完成签到,获得积分10
7秒前
Foalphaz发布了新的文献求助10
8秒前
魔人啾啾完成签到,获得积分10
8秒前
bbb完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
芳菲依旧应助执着谷兰采纳,获得30
11秒前
11秒前
11秒前
无敌龙傲天完成签到,获得积分10
11秒前
今后应助hfy采纳,获得10
11秒前
huayi完成签到,获得积分10
12秒前
时光完成签到,获得积分20
12秒前
烨然发布了新的文献求助20
12秒前
苏打完成签到,获得积分10
12秒前
gengsumin完成签到,获得积分10
13秒前
自然映梦发布了新的文献求助10
13秒前
詹慧子发布了新的文献求助10
13秒前
zzz完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660897
求助须知:如何正确求助?哪些是违规求助? 4836059
关于积分的说明 15092345
捐赠科研通 4819501
什么是DOI,文献DOI怎么找? 2579320
邀请新用户注册赠送积分活动 1533794
关于科研通互助平台的介绍 1492586