TNSNet: Thyroid nodule segmentation in ultrasound imaging using soft shape supervision

计算机科学 分割 人工智能 甲状腺结节 计算机视觉 深度学习 可视化 反褶积 结核(地质) 模式识别(心理学) 图像分割 路径(计算) 散斑噪声 人工神经网络 斑点图案 甲状腺 医学 算法 古生物学 内科学 生物 程序设计语言
作者
Jiawei Sun,Chunying Li,Zhengda Lu,Mu He,Tong Zhao,Xiaoqin Li,Liugang Gao,Kai Xie,Tao Lin,Jianfeng Sui,Qianyi Xi,Fan Zhang,Xinye Ni
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:215: 106600-106600 被引量:41
标识
DOI:10.1016/j.cmpb.2021.106600
摘要

Thyroid nodules are a common disorder of the endocrine system. Segmentation of thyroid nodules on ultrasound images is an important step in the evaluation and diagnosis of nodules and an initial step in computer-aided diagnostic systems. The accuracy and consistency of segmentation remain a challenge due to the low contrast, speckle noise, and low resolution of ultrasound images. Therefore, the study of deep learning-based algorithms for thyroid nodule segmentation is important. This study utilizes soft shape supervision to improve the performance of detection and segmentation of boundaries of nodules. Soft shape supervision can emphasize the boundary features and assist the network in segmenting nodules accurately.We propose a dual-path convolution neural network, including region and shape paths, which use DeepLabV3+ as the backbone. Soft shape supervision blocks are inserted between the two paths to implement cross-path attention mechanisms. The blocks enhance the representation of shape features and add them to the region path as auxiliary information. Thus, the network can accurately detect and segment thyroid nodules.We collect 3786 ultrasound images of thyroid nodules to train and test our network. Compared with the ground truth, the test results achieve an accuracy of 95.81% and a DSC of 85.33. The visualization results also suggest that the network has learned clear and accurate boundaries of the nodules. The evaluation metrics and visualization results demonstrate the superior segmentation performance of the network to other classical deep learning-based networks.The proposed dual-path network can accurately realize automatic segmentation of thyroid nodules on ultrasound images. It can also be used as an initial step in computer-aided diagnosis. It shows superior performance to other classical methods and demonstrates the potential for accurate segmentation of nodules in clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾无忧发布了新的文献求助10
刚刚
星辰大海应助池鱼思故渊采纳,获得30
刚刚
一刀完成签到,获得积分10
1秒前
Stella应助GC采纳,获得10
1秒前
迅速的易巧完成签到 ,获得积分10
2秒前
2秒前
2秒前
大胆的忆寒完成签到,获得积分10
2秒前
如常发布了新的文献求助10
2秒前
充电宝应助Rr采纳,获得10
2秒前
cyuan发布了新的文献求助10
2秒前
欣喜谷槐完成签到,获得积分10
2秒前
ccepted1122给ccepted1122的求助进行了留言
3秒前
3秒前
3秒前
啊炜发布了新的文献求助200
3秒前
董卓小蛮腰完成签到,获得积分10
3秒前
wwwww完成签到,获得积分10
4秒前
4秒前
mk发布了新的文献求助10
4秒前
4秒前
0range完成签到,获得积分10
4秒前
知秋发布了新的文献求助10
4秒前
mmmm完成签到,获得积分10
5秒前
GuanguanYaa发布了新的文献求助10
5秒前
hsy309完成签到,获得积分10
5秒前
NN发布了新的文献求助30
6秒前
嘲鸫完成签到,获得积分10
6秒前
刘胖胖发布了新的文献求助30
6秒前
6秒前
李晓彤发布了新的文献求助10
7秒前
7秒前
洁净的元蝶完成签到,获得积分10
7秒前
安静的映萱完成签到,获得积分10
7秒前
香蕉冰真发布了新的文献求助10
7秒前
pray完成签到,获得积分20
8秒前
照亮世界的ay完成签到,获得积分10
8秒前
城南以南发布了新的文献求助10
9秒前
13击发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017