已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TNSNet: Thyroid nodule segmentation in ultrasound imaging using soft shape supervision

计算机科学 分割 人工智能 甲状腺结节 计算机视觉 深度学习 可视化 反褶积 结核(地质) 模式识别(心理学) 图像分割 路径(计算) 散斑噪声 人工神经网络 斑点图案 甲状腺 医学 算法 程序设计语言 古生物学 内科学 生物
作者
Jiawei Sun,Chunying Li,Zhengda Lu,Mu He,Tong Zhao,Xiaoqin Li,Liugang Gao,Kai Xie,Tao Lin,Jianfeng Sui,Qianyi Xi,Fan Zhang,Xinye Ni
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:215: 106600-106600 被引量:28
标识
DOI:10.1016/j.cmpb.2021.106600
摘要

Thyroid nodules are a common disorder of the endocrine system. Segmentation of thyroid nodules on ultrasound images is an important step in the evaluation and diagnosis of nodules and an initial step in computer-aided diagnostic systems. The accuracy and consistency of segmentation remain a challenge due to the low contrast, speckle noise, and low resolution of ultrasound images. Therefore, the study of deep learning-based algorithms for thyroid nodule segmentation is important. This study utilizes soft shape supervision to improve the performance of detection and segmentation of boundaries of nodules. Soft shape supervision can emphasize the boundary features and assist the network in segmenting nodules accurately.We propose a dual-path convolution neural network, including region and shape paths, which use DeepLabV3+ as the backbone. Soft shape supervision blocks are inserted between the two paths to implement cross-path attention mechanisms. The blocks enhance the representation of shape features and add them to the region path as auxiliary information. Thus, the network can accurately detect and segment thyroid nodules.We collect 3786 ultrasound images of thyroid nodules to train and test our network. Compared with the ground truth, the test results achieve an accuracy of 95.81% and a DSC of 85.33. The visualization results also suggest that the network has learned clear and accurate boundaries of the nodules. The evaluation metrics and visualization results demonstrate the superior segmentation performance of the network to other classical deep learning-based networks.The proposed dual-path network can accurately realize automatic segmentation of thyroid nodules on ultrasound images. It can also be used as an initial step in computer-aided diagnosis. It shows superior performance to other classical methods and demonstrates the potential for accurate segmentation of nodules in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助现代的邑采纳,获得10
3秒前
科研通AI2S应助小小鱼采纳,获得10
5秒前
6秒前
11秒前
14秒前
小鱼发布了新的文献求助10
16秒前
17秒前
积极的香菇完成签到 ,获得积分10
17秒前
andy发布了新的文献求助10
18秒前
Thh发布了新的文献求助10
20秒前
21秒前
23秒前
852应助Sooinlee采纳,获得30
23秒前
务实飞丹完成签到,获得积分20
24秒前
范礼运20810完成签到 ,获得积分10
24秒前
乔达摩悉达多完成签到 ,获得积分10
25秒前
26秒前
852应助andy采纳,获得10
27秒前
十七完成签到 ,获得积分10
28秒前
海豚音521033完成签到,获得积分10
28秒前
大个应助优美的背包采纳,获得10
31秒前
情怀应助谷歌采纳,获得10
31秒前
32秒前
YEFEIeee完成签到 ,获得积分10
36秒前
Yingyii完成签到,获得积分10
36秒前
37秒前
老肖应助小鱼采纳,获得10
37秒前
不安红豆发布了新的文献求助10
38秒前
40秒前
nav完成签到 ,获得积分10
41秒前
痞先森发布了新的文献求助10
42秒前
45秒前
咖啡豆应助小小鱼采纳,获得10
46秒前
47秒前
沙沙完成签到,获得积分20
50秒前
Sooinlee发布了新的文献求助30
51秒前
草田苗发布了新的文献求助10
52秒前
完美梨愁完成签到 ,获得积分10
52秒前
53秒前
洁净的盼烟应助Xdz采纳,获得10
53秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136896
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783548
捐赠科研通 2443945
什么是DOI,文献DOI怎么找? 1299509
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954