TNSNet: Thyroid nodule segmentation in ultrasound imaging using soft shape supervision

计算机科学 分割 人工智能 甲状腺结节 计算机视觉 深度学习 可视化 反褶积 结核(地质) 模式识别(心理学) 图像分割 路径(计算) 散斑噪声 人工神经网络 斑点图案 甲状腺 医学 算法 古生物学 内科学 生物 程序设计语言
作者
Jiawei Sun,Chunying Li,Zhengda Lu,Mu He,Tong Zhao,Xiaoqin Li,Liugang Gao,Kai Xie,Tao Lin,Jianfeng Sui,Qianyi Xi,Fan Zhang,Xinye Ni
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:215: 106600-106600 被引量:41
标识
DOI:10.1016/j.cmpb.2021.106600
摘要

Thyroid nodules are a common disorder of the endocrine system. Segmentation of thyroid nodules on ultrasound images is an important step in the evaluation and diagnosis of nodules and an initial step in computer-aided diagnostic systems. The accuracy and consistency of segmentation remain a challenge due to the low contrast, speckle noise, and low resolution of ultrasound images. Therefore, the study of deep learning-based algorithms for thyroid nodule segmentation is important. This study utilizes soft shape supervision to improve the performance of detection and segmentation of boundaries of nodules. Soft shape supervision can emphasize the boundary features and assist the network in segmenting nodules accurately.We propose a dual-path convolution neural network, including region and shape paths, which use DeepLabV3+ as the backbone. Soft shape supervision blocks are inserted between the two paths to implement cross-path attention mechanisms. The blocks enhance the representation of shape features and add them to the region path as auxiliary information. Thus, the network can accurately detect and segment thyroid nodules.We collect 3786 ultrasound images of thyroid nodules to train and test our network. Compared with the ground truth, the test results achieve an accuracy of 95.81% and a DSC of 85.33. The visualization results also suggest that the network has learned clear and accurate boundaries of the nodules. The evaluation metrics and visualization results demonstrate the superior segmentation performance of the network to other classical deep learning-based networks.The proposed dual-path network can accurately realize automatic segmentation of thyroid nodules on ultrasound images. It can also be used as an initial step in computer-aided diagnosis. It shows superior performance to other classical methods and demonstrates the potential for accurate segmentation of nodules in clinical applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助褚呦采纳,获得10
刚刚
kk完成签到,获得积分10
1秒前
jiao完成签到,获得积分10
1秒前
lilei完成签到 ,获得积分10
1秒前
我爱科研发布了新的文献求助10
1秒前
HOAN应助陈伟利采纳,获得10
1秒前
SciGPT应助1123采纳,获得10
1秒前
2秒前
2秒前
坚定的贞完成签到,获得积分10
2秒前
在水一方应助曾经的伯云采纳,获得10
3秒前
lex完成签到,获得积分10
3秒前
DT完成签到,获得积分10
3秒前
Erin发布了新的文献求助10
4秒前
陈秋禹发布了新的文献求助10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
今后应助zbylaosiji采纳,获得10
6秒前
liziming发布了新的文献求助20
8秒前
8秒前
9秒前
9秒前
9秒前
wangtian完成签到,获得积分10
9秒前
10秒前
肖先生完成签到,获得积分10
10秒前
研友_LJGpan完成签到,获得积分10
10秒前
李Li发布了新的文献求助20
11秒前
文献完成签到 ,获得积分10
11秒前
11秒前
11秒前
英姑应助小鱼干儿采纳,获得10
12秒前
1123完成签到,获得积分10
12秒前
鞋子完成签到,获得积分10
12秒前
落后十八发布了新的文献求助20
13秒前
fxx发布了新的文献求助10
13秒前
TLB关闭了TLB文献求助
13秒前
杨烨华完成签到 ,获得积分10
13秒前
缓慢的士晋完成签到,获得积分10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693193
求助须知:如何正确求助?哪些是违规求助? 5091453
关于积分的说明 15210744
捐赠科研通 4850188
什么是DOI,文献DOI怎么找? 2601603
邀请新用户注册赠送积分活动 1553417
关于科研通互助平台的介绍 1511406