黄曲霉毒素
检出限
荧光
纳米探针
适体
化学
线性范围
生物分子
纳米颗粒
分析化学(期刊)
核化学
色谱法
纳米技术
材料科学
生物化学
物理
生物
量子力学
遗传学
食品科学
作者
Min Li,Zhijuan Qian,Chifang Peng,Xinlin Wei,Zhouping Wang
出处
期刊:ACS applied bio materials
[American Chemical Society]
日期:2021-12-16
卷期号:5 (1): 285-294
被引量:7
标识
DOI:10.1021/acsabm.1c01079
摘要
Rapid detection of aflatoxin B1 (AFB1) is a very important task in food safety monitoring. However, it is still challenging to achieve highly sensitive detection without antibody or aptamer biomolecules. In this work, a rapid detection of aflatoxin B1 was achieved using a ratiometric fluorescence probe without antibody or aptamer for the first time. In the ratiometric fluorescence system, the fluorescence emission of AFB1 at 433 nm was significantly enhanced due to the β-cyclodextrin–AFB1 host–guest interaction and the complexation of AFB1 and Pt2+. Meanwhile, the inclusion of aflatoxin B1 also quenched the fluorescence emission of β-CD@Cu nanoparticles (NPs) at 650 nm based on inner filter effect mechanism. On the basis of the above effects, the ratiometric detection of aflatoxin B1 was achieved in the range of 0.03–10 ng/mL with a low detection limit of 0.012 ng/mL (3σ/s). In addition, the β-CD@Cu NPs based nanoprobe could achieve stable response within 1 min to AFB1. The above ratiometric detection also demonstrated excellent application potential in the rapid on-site detection of AFB1 in food due to the advantages of convenience, rapidness, and high accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI