甲醛
材料科学
氧气
吸附
化学吸附
等离子体
分子
化学工程
表面改性
纤维
纳米技术
化学
复合材料
有机化学
物理
量子力学
工程类
作者
Haiying Du,Yuxia Wu,Zhaorui Zhang,Wanmin He,Jing Wang,Yanhui Sun,Liying Cong
出处
期刊:Nanotechnology
[IOP Publishing]
日期:2022-06-01
卷期号:33 (34): 345504-345504
被引量:1
标识
DOI:10.1088/1361-6528/ac4286
摘要
Chemisorbed oxygen acts a crucial role in the redox reaction of semiconductor gas sensors, and which is of great significance for improving gas sensing performance. In this study, an oxygen-plasma-assisted technology is presented to enhance the chemisorbed oxygen for improving the formaldehyde sensing performance of SnO2electropun fiber. An inductively coupled plasma device was used for oxygen plasma treatment of SnO2electrospun fibers. The surface of SnO2electrospun fibers was bombarded with high-energy oxygen plasma for facilitating the chemisorption of electronegative oxygen molecules on the SnO2(110) surface to obtain an oxygen-rich structure. Oxygen-plasma-assisted SnO2electrospun fibers exhibited excellent formaldehyde sensing performance. The formaldehyde adsorption mechanism of oxygen-rich SnO2was investigated using density functional theory. After oxygen plasma modification, the adsorption energy and the charge transfer number of formaldehyde to SnO2were increased significantly. And an unoccupied electronic state appeared in the SnO2band structure, which could enhance the formaldehyde adsorption ability of SnO2. The gas sensing test revealed that plasma-treated SnO2electrospun fibers exhibited excellent gas sensing properties to formaldehyde, low operating temperature, high response sensitivity, and considerable cross-selectivity. Thus, plasma modification is a simple and effective method to improve the gas sensing performance of sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI