生物加工
纺纱
制作
喷射(流体)
材料科学
纳米技术
水射流
生物医学工程
纤维
组织工程
机械工程
解剖
工程制图
工程类
复合材料
物理
生物
机械
医学
替代医学
病理
喷嘴
作者
Huibin Chang,Qihan Liu,John F. Zimmerman,Keel Yong Lee,Qianru Jin,Michael M. Peters,Michael Rosnach,Suji Choi,Sean L. Kim,Herdeline Ann M. Ardoña,Luke A. MacQueen,Christophe O. Chantre,Sarah E. Motta,Elizabeth M. Cordoves,Kevin Kit Parker
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2022-07-07
卷期号:377 (6602): 180-185
被引量:65
标识
DOI:10.1126/science.abl6395
摘要
Helical alignments within the heart’s musculature have been speculated to be important in achieving physiological pumping efficiencies. Testing this possibility is difficult, however, because it is challenging to reproduce the fine spatial features and complex structures of the heart’s musculature using current techniques. Here we report focused rotary jet spinning (FRJS), an additive manufacturing approach that enables rapid fabrication of micro/nanofiber scaffolds with programmable alignments in three-dimensional geometries. Seeding these scaffolds with cardiomyocytes enabled the biofabrication of tissue-engineered ventricles, with helically aligned models displaying more uniform deformations, greater apical shortening, and increased ejection fractions compared with circumferential alignments. The ability of FRJS to control fiber arrangements in three dimensions offers a streamlined approach to fabricating tissues and organs, with this work demonstrating how helical architectures contribute to cardiac performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI