Morphological Instability of Lithium Electrodeposition Due to Stress-Driven Interface Diffusion

材料科学 胡须 络腮胡子 复合材料 扩散 压力(语言学) 电解质 晶界 锂(药物) 不稳定性 表面扩散 电极 限制电流 化学 微观结构 机械 热力学 电化学 吸附 物理化学 语言学 有机化学 哲学 内分泌学 物理 医学
作者
Kurt R. Hebert
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (1): 39-39
标识
DOI:10.1149/ma2022-01139mtgabs
摘要

Morphological instability of the lithium-electrolyte interface is a critical problem limiting the development of lithium-metal negative electrodes for batteries. At high current densities approaching the diffusion-limited current density, dendrites form due to depletion of Li+ ions near the electrode surface (1). At lower current densities, unstable deposition produces whiskers (2). Whiskers are separated by typically several micrometers, and in contrast to dendrites grow by addition of Li atoms to their base or "root" (3). Experimental evidence indicates that whisker growth is fed by large-scale interface or grain boundary diffusion, and that whiskers relieve compressive stress in the metal generated by electrodeposition (4-7). The present study proposes that Li electrodeposition is destabilized by interface diffusion driven by compressive stress due to incorporation of Li atoms at grain boundaries. The competition between stress and stabilizing surface energy effects generates a surface pattern which determines (in part) whisker sites. A morphological instability model is formulated based on the Asaro-Tiller-Grinfel'd (ATG) surface instability on elastically stress solids (8). The model applies to deposits less than 1 micron thick for which elastic deformation is expected to dominate (9,10). The Li electrode is depicted by a three-layer elastic model consisting of a stress-free substrate (current collector) layer, a Li layer with uniform diffusion-induced in-plane stress, and top layer. The top layer can simulate submicron thickness solid-electrolyte interface (SEI) layers, or macroscopically thick polymer separators and solid electrolytes. The Li-top layer interface deforms by diffusion. Out-of-plane normal stress is included to simulate the effect of applied stress on the instability (11,12). For model calculations, the interface stress was estimated from neutron-depth-profiling measurements of Li diffusion into Cu current collectors (13). The measured Li incorporation was found to be consistent with a whisker spacing of several microns, in agreement with experimental results (3,6,14). Calculations showed that the instability is inhibited significantly by the use of substrates with elastic modulus much greater than that of Li. This substrate stiffness effect is consistent with experimental observations of Sn whiskers (15). The effect of a stress-free SEI layer on the instability was found to be negligible, due to its small thickness. Whisker growth was suppressed by macroscopically thick top layers with elastic modulus at least 10 times that of Li. No significant whisker inhibition was found at applied stress levels of ~ 1 MPa, which are found experimentally to stabilize deposition in Li films significantly exceeding 1 micron thickness (11,12). This effect may be due to an instability associated with viscoplastic rather than elastic deformation (16). REFERENCES P. Bai et al., Energy Environ. Sci., 9, 3221(2016). L Frenck et al., Front. Energy Res., 7, 115 (2016) A. Kushima et al., Nano Energy, 32, 271 (2017). J. H. Cho et al., Energy Storage Mater., 24, 281 (2020). X. Wang et al., Nat. Energy, 3, 227 (2018). A. A. Rulev et al., J. Phys. Chem. Lett., 11, 10511 (2020). E. Chason et al., Prog. Surf. Sci., 88, 103 (2013). B. J. Spencer et al., J. Appl. Phys., 73, 4956 (1993). C. Xu et al., Proc. Nat. Acad. Sci., 114, 57 (2017). L. Q. Zhang et al., Nat. Nanotechnol., 15, 94 (2020). A. J. Louli et al., J. Electrochem. Soc., 166, A1291 (2019). K. L. Harrison et al., ACS Appl. Mater. Interfaces, 13, 31668 (2021). S. Lv et al., Nat. Commun., 9, 2152 (2018). J. Steiger et al., J. Power Sources, 261, 112 (2014). B. Hutchinson et al., Mater. Sci. Forum, 467-470, 465 (2004). S. Narayan and L. Anand, J. Electrochem. Soc., 167, 040525 (2020).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助liwen采纳,获得10
刚刚
刚刚
1秒前
1秒前
共享精神应助lllllll采纳,获得10
1秒前
ning完成签到,获得积分10
2秒前
十元钱芝麻完成签到,获得积分10
2秒前
冷艳的无极完成签到,获得积分20
3秒前
酷波er应助执着的可仁采纳,获得10
3秒前
3秒前
22完成签到,获得积分10
5秒前
陈陈发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
凝子老师发布了新的文献求助10
6秒前
李llll完成签到,获得积分10
6秒前
郭志倩发布了新的文献求助10
6秒前
雪白发卡完成签到,获得积分10
6秒前
豆豆哥发布了新的文献求助10
6秒前
无限寻雪完成签到 ,获得积分10
6秒前
无情的水蓉完成签到,获得积分10
7秒前
Bob_Hello关注了科研通微信公众号
8秒前
8秒前
9秒前
夜盏丿完成签到,获得积分10
9秒前
9秒前
甜蜜邑发布了新的文献求助10
9秒前
10秒前
研友_ndvWy8完成签到,获得积分10
10秒前
11秒前
上官若男应助22采纳,获得10
12秒前
zhong完成签到,获得积分10
12秒前
13秒前
所所应助凝子老师采纳,获得10
13秒前
13秒前
ssusshan1021发布了新的文献求助10
14秒前
charint发布了新的文献求助10
14秒前
14秒前
14秒前
寒冷的沛珊完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4956927
求助须知:如何正确求助?哪些是违规求助? 4218598
关于积分的说明 13130015
捐赠科研通 4001436
什么是DOI,文献DOI怎么找? 2189766
邀请新用户注册赠送积分活动 1204746
关于科研通互助平台的介绍 1116414