亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Morphological Instability of Lithium Electrodeposition Due to Stress-Driven Interface Diffusion

材料科学 胡须 络腮胡子 复合材料 扩散 压力(语言学) 电解质 晶界 锂(药物) 不稳定性 表面扩散 电极 限制电流 化学 微观结构 机械 热力学 电化学 吸附 医学 语言学 哲学 物理 有机化学 物理化学 内分泌学
作者
Kurt R. Hebert
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (1): 39-39
标识
DOI:10.1149/ma2022-01139mtgabs
摘要

Morphological instability of the lithium-electrolyte interface is a critical problem limiting the development of lithium-metal negative electrodes for batteries. At high current densities approaching the diffusion-limited current density, dendrites form due to depletion of Li+ ions near the electrode surface (1). At lower current densities, unstable deposition produces whiskers (2). Whiskers are separated by typically several micrometers, and in contrast to dendrites grow by addition of Li atoms to their base or "root" (3). Experimental evidence indicates that whisker growth is fed by large-scale interface or grain boundary diffusion, and that whiskers relieve compressive stress in the metal generated by electrodeposition (4-7). The present study proposes that Li electrodeposition is destabilized by interface diffusion driven by compressive stress due to incorporation of Li atoms at grain boundaries. The competition between stress and stabilizing surface energy effects generates a surface pattern which determines (in part) whisker sites. A morphological instability model is formulated based on the Asaro-Tiller-Grinfel'd (ATG) surface instability on elastically stress solids (8). The model applies to deposits less than 1 micron thick for which elastic deformation is expected to dominate (9,10). The Li electrode is depicted by a three-layer elastic model consisting of a stress-free substrate (current collector) layer, a Li layer with uniform diffusion-induced in-plane stress, and top layer. The top layer can simulate submicron thickness solid-electrolyte interface (SEI) layers, or macroscopically thick polymer separators and solid electrolytes. The Li-top layer interface deforms by diffusion. Out-of-plane normal stress is included to simulate the effect of applied stress on the instability (11,12). For model calculations, the interface stress was estimated from neutron-depth-profiling measurements of Li diffusion into Cu current collectors (13). The measured Li incorporation was found to be consistent with a whisker spacing of several microns, in agreement with experimental results (3,6,14). Calculations showed that the instability is inhibited significantly by the use of substrates with elastic modulus much greater than that of Li. This substrate stiffness effect is consistent with experimental observations of Sn whiskers (15). The effect of a stress-free SEI layer on the instability was found to be negligible, due to its small thickness. Whisker growth was suppressed by macroscopically thick top layers with elastic modulus at least 10 times that of Li. No significant whisker inhibition was found at applied stress levels of ~ 1 MPa, which are found experimentally to stabilize deposition in Li films significantly exceeding 1 micron thickness (11,12). This effect may be due to an instability associated with viscoplastic rather than elastic deformation (16). REFERENCES P. Bai et al., Energy Environ. Sci., 9, 3221(2016). L Frenck et al., Front. Energy Res., 7, 115 (2016) A. Kushima et al., Nano Energy, 32, 271 (2017). J. H. Cho et al., Energy Storage Mater., 24, 281 (2020). X. Wang et al., Nat. Energy, 3, 227 (2018). A. A. Rulev et al., J. Phys. Chem. Lett., 11, 10511 (2020). E. Chason et al., Prog. Surf. Sci., 88, 103 (2013). B. J. Spencer et al., J. Appl. Phys., 73, 4956 (1993). C. Xu et al., Proc. Nat. Acad. Sci., 114, 57 (2017). L. Q. Zhang et al., Nat. Nanotechnol., 15, 94 (2020). A. J. Louli et al., J. Electrochem. Soc., 166, A1291 (2019). K. L. Harrison et al., ACS Appl. Mater. Interfaces, 13, 31668 (2021). S. Lv et al., Nat. Commun., 9, 2152 (2018). J. Steiger et al., J. Power Sources, 261, 112 (2014). B. Hutchinson et al., Mater. Sci. Forum, 467-470, 465 (2004). S. Narayan and L. Anand, J. Electrochem. Soc., 167, 040525 (2020).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
完美世界应助小雨o0采纳,获得10
1分钟前
1分钟前
小雨o0发布了新的文献求助10
1分钟前
2分钟前
simitundeins应助科研通管家采纳,获得30
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
隐形曼青应助科研通管家采纳,获得10
2分钟前
2分钟前
qx发布了新的文献求助10
2分钟前
2分钟前
3分钟前
djdh完成签到 ,获得积分10
3分钟前
领导范儿应助伊可创采纳,获得10
4分钟前
打打应助jimmylafs采纳,获得10
4分钟前
伊可创完成签到,获得积分20
4分钟前
simitundeins应助科研通管家采纳,获得50
4分钟前
4分钟前
陶醉紫青发布了新的文献求助10
4分钟前
Demi_Ming完成签到,获得积分10
4分钟前
qx完成签到,获得积分10
4分钟前
Saven发布了新的文献求助10
5分钟前
6分钟前
6分钟前
加菲丰丰完成签到,获得积分0
6分钟前
Saven发布了新的文献求助10
6分钟前
Saven完成签到,获得积分10
6分钟前
yuzh完成签到 ,获得积分10
7分钟前
bkagyin应助斯文墨镜采纳,获得10
7分钟前
小白菜完成签到,获得积分10
7分钟前
7分钟前
liudy发布了新的文献求助30
7分钟前
斯文墨镜发布了新的文献求助10
7分钟前
Sunnpy完成签到 ,获得积分10
8分钟前
充电宝应助科研通管家采纳,获得10
8分钟前
8分钟前
JamesPei应助斯文墨镜采纳,获得10
8分钟前
9分钟前
9分钟前
123456发布了新的文献求助10
9分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3521536
求助须知:如何正确求助?哪些是违规求助? 3102893
关于积分的说明 9261754
捐赠科研通 2799034
什么是DOI,文献DOI怎么找? 1536357
邀请新用户注册赠送积分活动 714778
科研通“疑难数据库(出版商)”最低求助积分说明 708462