清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Morphological Instability of Lithium Electrodeposition Due to Stress-Driven Interface Diffusion

材料科学 胡须 络腮胡子 复合材料 扩散 压力(语言学) 电解质 晶界 锂(药物) 不稳定性 表面扩散 电极 限制电流 化学 微观结构 机械 热力学 电化学 吸附 医学 语言学 哲学 物理 有机化学 物理化学 内分泌学
作者
Kurt R. Hebert
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (1): 39-39
标识
DOI:10.1149/ma2022-01139mtgabs
摘要

Morphological instability of the lithium-electrolyte interface is a critical problem limiting the development of lithium-metal negative electrodes for batteries. At high current densities approaching the diffusion-limited current density, dendrites form due to depletion of Li+ ions near the electrode surface (1). At lower current densities, unstable deposition produces whiskers (2). Whiskers are separated by typically several micrometers, and in contrast to dendrites grow by addition of Li atoms to their base or "root" (3). Experimental evidence indicates that whisker growth is fed by large-scale interface or grain boundary diffusion, and that whiskers relieve compressive stress in the metal generated by electrodeposition (4-7). The present study proposes that Li electrodeposition is destabilized by interface diffusion driven by compressive stress due to incorporation of Li atoms at grain boundaries. The competition between stress and stabilizing surface energy effects generates a surface pattern which determines (in part) whisker sites. A morphological instability model is formulated based on the Asaro-Tiller-Grinfel'd (ATG) surface instability on elastically stress solids (8). The model applies to deposits less than 1 micron thick for which elastic deformation is expected to dominate (9,10). The Li electrode is depicted by a three-layer elastic model consisting of a stress-free substrate (current collector) layer, a Li layer with uniform diffusion-induced in-plane stress, and top layer. The top layer can simulate submicron thickness solid-electrolyte interface (SEI) layers, or macroscopically thick polymer separators and solid electrolytes. The Li-top layer interface deforms by diffusion. Out-of-plane normal stress is included to simulate the effect of applied stress on the instability (11,12). For model calculations, the interface stress was estimated from neutron-depth-profiling measurements of Li diffusion into Cu current collectors (13). The measured Li incorporation was found to be consistent with a whisker spacing of several microns, in agreement with experimental results (3,6,14). Calculations showed that the instability is inhibited significantly by the use of substrates with elastic modulus much greater than that of Li. This substrate stiffness effect is consistent with experimental observations of Sn whiskers (15). The effect of a stress-free SEI layer on the instability was found to be negligible, due to its small thickness. Whisker growth was suppressed by macroscopically thick top layers with elastic modulus at least 10 times that of Li. No significant whisker inhibition was found at applied stress levels of ~ 1 MPa, which are found experimentally to stabilize deposition in Li films significantly exceeding 1 micron thickness (11,12). This effect may be due to an instability associated with viscoplastic rather than elastic deformation (16). REFERENCES P. Bai et al., Energy Environ. Sci., 9, 3221(2016). L Frenck et al., Front. Energy Res., 7, 115 (2016) A. Kushima et al., Nano Energy, 32, 271 (2017). J. H. Cho et al., Energy Storage Mater., 24, 281 (2020). X. Wang et al., Nat. Energy, 3, 227 (2018). A. A. Rulev et al., J. Phys. Chem. Lett., 11, 10511 (2020). E. Chason et al., Prog. Surf. Sci., 88, 103 (2013). B. J. Spencer et al., J. Appl. Phys., 73, 4956 (1993). C. Xu et al., Proc. Nat. Acad. Sci., 114, 57 (2017). L. Q. Zhang et al., Nat. Nanotechnol., 15, 94 (2020). A. J. Louli et al., J. Electrochem. Soc., 166, A1291 (2019). K. L. Harrison et al., ACS Appl. Mater. Interfaces, 13, 31668 (2021). S. Lv et al., Nat. Commun., 9, 2152 (2018). J. Steiger et al., J. Power Sources, 261, 112 (2014). B. Hutchinson et al., Mater. Sci. Forum, 467-470, 465 (2004). S. Narayan and L. Anand, J. Electrochem. Soc., 167, 040525 (2020).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liufgui应助乏味采纳,获得30
11秒前
量子星尘发布了新的文献求助30
15秒前
wujiwuhui完成签到 ,获得积分10
30秒前
32秒前
33秒前
47秒前
顺利问玉完成签到 ,获得积分10
51秒前
舒适以松发布了新的文献求助10
53秒前
1分钟前
饱满的新之完成签到 ,获得积分10
1分钟前
clock完成签到 ,获得积分10
1分钟前
huanghe完成签到,获得积分10
1分钟前
偷得浮生半日闲完成签到,获得积分10
1分钟前
1分钟前
球球应助Yjj采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
英俊的铭应助舒适以松采纳,获得10
1分钟前
11完成签到 ,获得积分10
1分钟前
1分钟前
舒适以松发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
脑洞疼应助舒适以松采纳,获得10
2分钟前
乏味发布了新的文献求助30
2分钟前
Yjj完成签到,获得积分20
2分钟前
张wx_100完成签到,获得积分10
2分钟前
laiba完成签到,获得积分10
2分钟前
河豚不擦鞋完成签到 ,获得积分10
2分钟前
我是老大应助乏味采纳,获得30
2分钟前
Sunny完成签到,获得积分10
2分钟前
3分钟前
3分钟前
乏味发布了新的文献求助30
3分钟前
科研佟完成签到 ,获得积分10
3分钟前
徐团伟完成签到 ,获得积分10
3分钟前
小西完成签到 ,获得积分10
3分钟前
wuqi完成签到 ,获得积分10
3分钟前
Herbs完成签到 ,获得积分10
3分钟前
jxz9510完成签到 ,获得积分10
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015400
求助须知:如何正确求助?哪些是违规求助? 3555341
关于积分的说明 11317993
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812000