Morphological Instability of Lithium Electrodeposition Due to Stress-Driven Interface Diffusion

材料科学 胡须 络腮胡子 复合材料 扩散 压力(语言学) 电解质 晶界 锂(药物) 不稳定性 表面扩散 电极 限制电流 化学 微观结构 机械 热力学 电化学 吸附 物理化学 语言学 有机化学 哲学 内分泌学 物理 医学
作者
Kurt R. Hebert
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (1): 39-39
标识
DOI:10.1149/ma2022-01139mtgabs
摘要

Morphological instability of the lithium-electrolyte interface is a critical problem limiting the development of lithium-metal negative electrodes for batteries. At high current densities approaching the diffusion-limited current density, dendrites form due to depletion of Li+ ions near the electrode surface (1). At lower current densities, unstable deposition produces whiskers (2). Whiskers are separated by typically several micrometers, and in contrast to dendrites grow by addition of Li atoms to their base or "root" (3). Experimental evidence indicates that whisker growth is fed by large-scale interface or grain boundary diffusion, and that whiskers relieve compressive stress in the metal generated by electrodeposition (4-7). The present study proposes that Li electrodeposition is destabilized by interface diffusion driven by compressive stress due to incorporation of Li atoms at grain boundaries. The competition between stress and stabilizing surface energy effects generates a surface pattern which determines (in part) whisker sites. A morphological instability model is formulated based on the Asaro-Tiller-Grinfel'd (ATG) surface instability on elastically stress solids (8). The model applies to deposits less than 1 micron thick for which elastic deformation is expected to dominate (9,10). The Li electrode is depicted by a three-layer elastic model consisting of a stress-free substrate (current collector) layer, a Li layer with uniform diffusion-induced in-plane stress, and top layer. The top layer can simulate submicron thickness solid-electrolyte interface (SEI) layers, or macroscopically thick polymer separators and solid electrolytes. The Li-top layer interface deforms by diffusion. Out-of-plane normal stress is included to simulate the effect of applied stress on the instability (11,12). For model calculations, the interface stress was estimated from neutron-depth-profiling measurements of Li diffusion into Cu current collectors (13). The measured Li incorporation was found to be consistent with a whisker spacing of several microns, in agreement with experimental results (3,6,14). Calculations showed that the instability is inhibited significantly by the use of substrates with elastic modulus much greater than that of Li. This substrate stiffness effect is consistent with experimental observations of Sn whiskers (15). The effect of a stress-free SEI layer on the instability was found to be negligible, due to its small thickness. Whisker growth was suppressed by macroscopically thick top layers with elastic modulus at least 10 times that of Li. No significant whisker inhibition was found at applied stress levels of ~ 1 MPa, which are found experimentally to stabilize deposition in Li films significantly exceeding 1 micron thickness (11,12). This effect may be due to an instability associated with viscoplastic rather than elastic deformation (16). REFERENCES P. Bai et al., Energy Environ. Sci., 9, 3221(2016). L Frenck et al., Front. Energy Res., 7, 115 (2016) A. Kushima et al., Nano Energy, 32, 271 (2017). J. H. Cho et al., Energy Storage Mater., 24, 281 (2020). X. Wang et al., Nat. Energy, 3, 227 (2018). A. A. Rulev et al., J. Phys. Chem. Lett., 11, 10511 (2020). E. Chason et al., Prog. Surf. Sci., 88, 103 (2013). B. J. Spencer et al., J. Appl. Phys., 73, 4956 (1993). C. Xu et al., Proc. Nat. Acad. Sci., 114, 57 (2017). L. Q. Zhang et al., Nat. Nanotechnol., 15, 94 (2020). A. J. Louli et al., J. Electrochem. Soc., 166, A1291 (2019). K. L. Harrison et al., ACS Appl. Mater. Interfaces, 13, 31668 (2021). S. Lv et al., Nat. Commun., 9, 2152 (2018). J. Steiger et al., J. Power Sources, 261, 112 (2014). B. Hutchinson et al., Mater. Sci. Forum, 467-470, 465 (2004). S. Narayan and L. Anand, J. Electrochem. Soc., 167, 040525 (2020).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沅期发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
俭朴奇异果完成签到,获得积分10
2秒前
橙鹿鹿的猫完成签到,获得积分10
2秒前
2秒前
边港洋发布了新的文献求助10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
7秒前
笨男孩发布了新的文献求助10
7秒前
8秒前
8秒前
wanghao发布了新的文献求助10
8秒前
陈湫完成签到,获得积分10
9秒前
田様应助等待的寒松采纳,获得10
9秒前
害怕的白竹完成签到,获得积分10
10秒前
随心完成签到,获得积分10
10秒前
怕孤单的嚣完成签到,获得积分20
10秒前
lcxw1224完成签到,获得积分10
10秒前
11秒前
长常九久发布了新的文献求助10
12秒前
15503116087发布了新的文献求助10
12秒前
大个应助初之采纳,获得10
13秒前
te发布了新的文献求助10
13秒前
边港洋完成签到,获得积分10
15秒前
15秒前
凤羽发布了新的文献求助10
16秒前
灵巧听露发布了新的文献求助10
16秒前
可爱的函函应助猫猫无敌采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
20秒前
爆米花应助刁弘睿采纳,获得10
20秒前
20秒前
20秒前
缥缈海云完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425