Machine-Learning Score Using Stress CMR for Death Prediction in Patients With Suspected or Known CAD

医学 弗雷明翰风险评分 冠状动脉疾病 内科学 队列 回顾性队列研究 磁共振成像 心脏病学 放射科 疾病
作者
Théo Pezel,Francesca Sanguineti,Philippe Garot,Thierry Unterseeh,Stéphane Champagne,Solenn Toupin,Stéphane Morisset,Thomas Hovasse,Alyssa Faradji,Tania Ah-Sing,Martin Nicol,Lounis Hamzi,Jean Guillaume Dillinger,Patrick Henry,V. Bousson,Jérôme Garot
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:15 (11): 1900-1913 被引量:17
标识
DOI:10.1016/j.jcmg.2022.05.007
摘要

In patients with suspected or known coronary artery disease, traditional prognostic risk assessment is based on a limited selection of clinical and imaging findings. Machine learning (ML) methods can take into account a greater number and complexity of variables.This study sought to investigate the feasibility and accuracy of ML using stress cardiac magnetic resonance (CMR) and clinical data to predict 10-year all-cause mortality in patients with suspected or known coronary artery disease, and compared its performance with existing clinical or CMR scores.Between 2008 and 2018, a retrospective cohort study with a median follow-up of 6.0 (IQR: 5.0-8.0) years included all consecutive patients referred for stress CMR. Twenty-three clinical and 11 stress CMR parameters were evaluated. ML involved automated feature selection by random survival forest, model building with a multiple fractional polynomial algorithm, and 5 repetitions of 10-fold stratified cross-validation. The primary outcome was all-cause death based on the electronic National Death Registry. The external validation cohort of the ML score was performed in another center.Of 31,752 consecutive patients (mean age: 63.7 ± 12.1 years, and 65.7% male), 2,679 (8.4%) died with 206,453 patient-years of follow-up. The ML score (ranging from 0 to 10 points) exhibited a higher area under the curve compared with Clinical and Stress Cardiac Magnetic Resonance score, European Systematic Coronary Risk Estimation score, QRISK3 score, Framingham Risk Score, and stress CMR data alone for prediction of 10-year all-cause mortality (ML score: 0.76 vs Clinical and Stress Cardiac Magnetic Resonance score: 0.68, European Systematic Coronary Risk Estimation score: 0.66, QRISK3 score: 0.64, Framingham Risk Score: 0.63, extent of inducible ischemia: 0.66, extent of late gadolinium enhancement: 0.65; all P < 0.001). The ML score also exhibited a good area under the curve in the external cohort (0.75).The ML score including clinical and stress CMR data exhibited a higher prognostic value to predict 10-year death compared with all traditional clinical or CMR scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆裂水龙头完成签到,获得积分10
刚刚
YoungLee完成签到,获得积分10
刚刚
科研助理发布了新的文献求助10
刚刚
ziru完成签到,获得积分10
1秒前
白白胖胖完成签到,获得积分10
1秒前
机灵铭完成签到 ,获得积分10
1秒前
2秒前
嘻嘻哈哈完成签到,获得积分10
2秒前
skysleeper完成签到,获得积分0
2秒前
量子星尘发布了新的文献求助10
3秒前
cangmingzi完成签到,获得积分10
4秒前
4秒前
木心o完成签到,获得积分10
5秒前
科研通AI6应助是阿杰帅哥采纳,获得10
5秒前
雨点完成签到,获得积分10
5秒前
5秒前
浅梦星河完成签到,获得积分10
5秒前
Chen完成签到 ,获得积分10
5秒前
毅然决然必然完成签到,获得积分10
5秒前
X_yyy完成签到 ,获得积分10
5秒前
有机菜花完成签到,获得积分20
6秒前
神经娃完成签到,获得积分10
6秒前
Bin_Liu完成签到,获得积分20
6秒前
充电宝应助Figbiliy采纳,获得30
6秒前
陈嘻嘻嘻嘻完成签到,获得积分10
7秒前
DoLaso完成签到,获得积分10
8秒前
杨家赘婿完成签到 ,获得积分20
9秒前
SheltonYang发布了新的文献求助30
9秒前
小怪发布了新的文献求助10
9秒前
10秒前
有机菜花发布了新的文献求助10
10秒前
JWKim完成签到,获得积分10
10秒前
喵喵完成签到,获得积分10
11秒前
Zoe完成签到,获得积分10
12秒前
XXXXX完成签到 ,获得积分10
12秒前
D_发布了新的文献求助10
13秒前
13秒前
JMrider发布了新的文献求助10
13秒前
Eton完成签到,获得积分10
14秒前
Figbiliy完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600096
求助须知:如何正确求助?哪些是违规求助? 4685809
关于积分的说明 14839646
捐赠科研通 4674865
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505659
关于科研通互助平台的介绍 1471109