Machine-Learning Score Using Stress CMR for Death Prediction in Patients With Suspected or Known CAD

医学 弗雷明翰风险评分 冠状动脉疾病 内科学 队列 回顾性队列研究 磁共振成像 心脏病学 放射科 疾病
作者
Théo Pezel,Francesca Sanguineti,Philippe Garot,Thierry Unterseeh,Stéphane Champagne,Solenn Toupin,Stéphane Morisset,Thomas Hovasse,Alyssa Faradji,Tania Ah-Sing,Martin Nicol,Lounis Hamzi,Jean Guillaume Dillinger,Patrick Henry,V. Bousson,Jérôme Garot
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:15 (11): 1900-1913 被引量:17
标识
DOI:10.1016/j.jcmg.2022.05.007
摘要

In patients with suspected or known coronary artery disease, traditional prognostic risk assessment is based on a limited selection of clinical and imaging findings. Machine learning (ML) methods can take into account a greater number and complexity of variables.This study sought to investigate the feasibility and accuracy of ML using stress cardiac magnetic resonance (CMR) and clinical data to predict 10-year all-cause mortality in patients with suspected or known coronary artery disease, and compared its performance with existing clinical or CMR scores.Between 2008 and 2018, a retrospective cohort study with a median follow-up of 6.0 (IQR: 5.0-8.0) years included all consecutive patients referred for stress CMR. Twenty-three clinical and 11 stress CMR parameters were evaluated. ML involved automated feature selection by random survival forest, model building with a multiple fractional polynomial algorithm, and 5 repetitions of 10-fold stratified cross-validation. The primary outcome was all-cause death based on the electronic National Death Registry. The external validation cohort of the ML score was performed in another center.Of 31,752 consecutive patients (mean age: 63.7 ± 12.1 years, and 65.7% male), 2,679 (8.4%) died with 206,453 patient-years of follow-up. The ML score (ranging from 0 to 10 points) exhibited a higher area under the curve compared with Clinical and Stress Cardiac Magnetic Resonance score, European Systematic Coronary Risk Estimation score, QRISK3 score, Framingham Risk Score, and stress CMR data alone for prediction of 10-year all-cause mortality (ML score: 0.76 vs Clinical and Stress Cardiac Magnetic Resonance score: 0.68, European Systematic Coronary Risk Estimation score: 0.66, QRISK3 score: 0.64, Framingham Risk Score: 0.63, extent of inducible ischemia: 0.66, extent of late gadolinium enhancement: 0.65; all P < 0.001). The ML score also exhibited a good area under the curve in the external cohort (0.75).The ML score including clinical and stress CMR data exhibited a higher prognostic value to predict 10-year death compared with all traditional clinical or CMR scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的jian发布了新的文献求助10
刚刚
松鼠15111完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
刚刚
1秒前
orixero应助shouyi886采纳,获得10
1秒前
在水一方应助leranlily采纳,获得10
1秒前
不想起名字完成签到,获得积分10
1秒前
傲天大侠完成签到 ,获得积分10
1秒前
non发布了新的文献求助10
2秒前
2秒前
阳光彩虹小白马完成签到,获得积分20
2秒前
LIUUU完成签到,获得积分10
2秒前
传奇3应助like采纳,获得10
2秒前
3秒前
wg发布了新的文献求助10
3秒前
慕言完成签到 ,获得积分10
4秒前
4秒前
田様应助zouzou采纳,获得10
4秒前
4秒前
sssxxx完成签到,获得积分10
4秒前
5秒前
斩渔发布了新的文献求助10
6秒前
xyy完成签到,获得积分10
6秒前
Niki发布了新的文献求助20
6秒前
完美世界应助炙热果汁采纳,获得10
6秒前
螺内酯发布了新的文献求助10
6秒前
6秒前
巧克力完成签到,获得积分10
7秒前
7秒前
Maxwell完成签到,获得积分10
7秒前
Wen发布了新的文献求助10
7秒前
薏米发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
郭濹涵发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894