亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-Learning Score Using Stress CMR for Death Prediction in Patients With Suspected or Known CAD

医学 弗雷明翰风险评分 冠状动脉疾病 内科学 队列 回顾性队列研究 磁共振成像 心脏病学 放射科 疾病
作者
Théo Pezel,Francesca Sanguineti,Philippe Garot,Thierry Unterseeh,Stéphane Champagne,Solenn Toupin,Stéphane Morisset,Thomas Hovasse,Alyssa Faradji,Tania Ah-Sing,Martin Nicol,Lounis Hamzi,Jean Guillaume Dillinger,Patrick Henry,V. Bousson,Jérôme Garot
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:15 (11): 1900-1913 被引量:8
标识
DOI:10.1016/j.jcmg.2022.05.007
摘要

In patients with suspected or known coronary artery disease, traditional prognostic risk assessment is based on a limited selection of clinical and imaging findings. Machine learning (ML) methods can take into account a greater number and complexity of variables.This study sought to investigate the feasibility and accuracy of ML using stress cardiac magnetic resonance (CMR) and clinical data to predict 10-year all-cause mortality in patients with suspected or known coronary artery disease, and compared its performance with existing clinical or CMR scores.Between 2008 and 2018, a retrospective cohort study with a median follow-up of 6.0 (IQR: 5.0-8.0) years included all consecutive patients referred for stress CMR. Twenty-three clinical and 11 stress CMR parameters were evaluated. ML involved automated feature selection by random survival forest, model building with a multiple fractional polynomial algorithm, and 5 repetitions of 10-fold stratified cross-validation. The primary outcome was all-cause death based on the electronic National Death Registry. The external validation cohort of the ML score was performed in another center.Of 31,752 consecutive patients (mean age: 63.7 ± 12.1 years, and 65.7% male), 2,679 (8.4%) died with 206,453 patient-years of follow-up. The ML score (ranging from 0 to 10 points) exhibited a higher area under the curve compared with Clinical and Stress Cardiac Magnetic Resonance score, European Systematic Coronary Risk Estimation score, QRISK3 score, Framingham Risk Score, and stress CMR data alone for prediction of 10-year all-cause mortality (ML score: 0.76 vs Clinical and Stress Cardiac Magnetic Resonance score: 0.68, European Systematic Coronary Risk Estimation score: 0.66, QRISK3 score: 0.64, Framingham Risk Score: 0.63, extent of inducible ischemia: 0.66, extent of late gadolinium enhancement: 0.65; all P < 0.001). The ML score also exhibited a good area under the curve in the external cohort (0.75).The ML score including clinical and stress CMR data exhibited a higher prognostic value to predict 10-year death compared with all traditional clinical or CMR scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
陶沛发布了新的文献求助10
1分钟前
大喵完成签到,获得积分10
3分钟前
爱静静完成签到,获得积分0
3分钟前
Jenny完成签到 ,获得积分10
4分钟前
书文混四方完成签到 ,获得积分10
5分钟前
5分钟前
隐形问萍完成签到,获得积分10
5分钟前
隐形问萍发布了新的文献求助10
6分钟前
FSYHantis完成签到,获得积分10
7分钟前
陈元元K完成签到,获得积分10
8分钟前
wangye完成签到 ,获得积分10
8分钟前
名侦探柯基完成签到 ,获得积分10
9分钟前
Jack80应助科研通管家采纳,获得50
9分钟前
cy0824完成签到 ,获得积分10
9分钟前
个性松完成签到 ,获得积分10
10分钟前
TAOTAO完成签到 ,获得积分10
10分钟前
11分钟前
麻将发布了新的文献求助10
11分钟前
13分钟前
活泼蜜蜂应助程风破浪采纳,获得10
13分钟前
毕个业完成签到 ,获得积分10
13分钟前
13分钟前
mengyuhuan完成签到 ,获得积分10
14分钟前
光亮的城完成签到 ,获得积分10
14分钟前
科研通AI2S应助wobuxin采纳,获得10
15分钟前
领导范儿应助CHEN采纳,获得10
16分钟前
17分钟前
CHEN发布了新的文献求助10
17分钟前
CHEN完成签到,获得积分10
17分钟前
星辰大海应助Bo采纳,获得10
17分钟前
17分钟前
Bo发布了新的文献求助10
18分钟前
Bo完成签到,获得积分10
18分钟前
18分钟前
quzhenzxxx完成签到 ,获得积分10
18分钟前
腰突患者的科研完成签到 ,获得积分10
19分钟前
科目三应助科研通管家采纳,获得10
19分钟前
隐形曼青应助科研通管家采纳,获得10
19分钟前
20分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899707
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142