Can Big Data Cure Risk Selection in Healthcare Capitation Program? A Game Theoretical Analysis

按人头付费 精算学 选择(遗传算法) 逆向选择 付款 业务 激励 财务风险 医疗保健 不完美的 风险分析(工程) 经济 微观经济学 计算机科学 财务 哲学 人工智能 经济增长 语言学
作者
Zhaowei She,Turgay Ayer,Daniel Montanera
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (6): 3117-3134 被引量:6
标识
DOI:10.1287/msom.2022.1127
摘要

Problem definition: This paper analyzes a market design problem in Medicare Advantage (MA), the largest risk-adjusted capitation payment program in the U.S. healthcare market. Evidence exists that the current MA capitation payment program unintentionally incentivizes health plans to cherry pick profitable patient types, which is referred to as “risk selection”. However, the root causes of the risk selection are not comprehensively understood, which we study in this paper. Academic / Practical Relevance: The existing literature primarily attributes the observed risk selection in MA market to data limitations and low explanatory power (e.g. low R 2 ) of the current risk adjustment design. As a result, the current understanding and expectation are that risk selection would gradually disappear over time with increased availability of big data. However, if informationally imperfect risk adjustment is not the only cause of risk selection, big data would provide false assurance to key stakeholders, which we investigate in this paper. Given that risk-adjusted capitation payment models have been increasingly adopted by payers in the U.S., our study would be of primary interest to payers, providers and policy makers in the healthcare market. Results: This paper shows that big data alone cannot cure risk selection in the MA capitation program. In particular, we show that even if the current MA risk adjustment design became informationally perfect (e.g. R 2 = 1), health plans would still have incentives to conduct risk selection, as imperfect risk adjustment is not the only cause of risk selection in the MA market. More specifically, we show that incentives would continue to persist for risk selection in the age of big data through strategically subsidizing some subgroups of patients using capitation payments collected from other subgroups, which we call “risk selection induced by cross subsidization.” We further propose a simple mechanism to address this risk selection problem induced by cross subsidization in MA. Methodology: We construct a game-theoretical model to derive the MA capitation rates under informationally perfect risk adjustment, and show that these capitation rates cannot eliminate risk selection in MA. Managerial Implications: To eliminate risk selection, payers should modify their current capitation mechanisms to take into account the cross subsidization incentives, as proposed in this paper. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.1127 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
f1mike110完成签到,获得积分10
刚刚
2秒前
快乐达不刘完成签到,获得积分10
2秒前
迷路的糜完成签到,获得积分10
3秒前
不懈奋进应助f1mike110采纳,获得30
4秒前
完美世界应助阔达凝天采纳,获得10
5秒前
5秒前
剑指天涯完成签到,获得积分10
5秒前
张瑞宁完成签到,获得积分10
5秒前
住在月亮隔壁完成签到,获得积分10
6秒前
科研通AI6应助qq采纳,获得10
7秒前
7秒前
田様应助qq采纳,获得10
7秒前
饱满菠萝给饱满菠萝的求助进行了留言
8秒前
若水完成签到 ,获得积分10
8秒前
9秒前
10秒前
万惜文完成签到,获得积分10
10秒前
10秒前
花痴的慕蕊完成签到,获得积分10
10秒前
研友_ngqjz8发布了新的文献求助10
11秒前
英姑应助邱乐乐采纳,获得10
11秒前
我来电了完成签到,获得积分10
11秒前
欢呼以冬完成签到,获得积分20
11秒前
11秒前
11秒前
安安发布了新的文献求助10
12秒前
12秒前
12秒前
独特含烟发布了新的文献求助10
13秒前
科研通AI2S应助浮生采纳,获得10
13秒前
wonderful发布了新的文献求助10
13秒前
13秒前
浪子应助机智翼采纳,获得10
14秒前
棱镜发布了新的文献求助10
14秒前
14秒前
啊啊啊发布了新的文献求助10
15秒前
小白发布了新的文献求助10
15秒前
Jasper应助能干蜜蜂采纳,获得10
15秒前
xiaojie2024发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809