Can Big Data Cure Risk Selection in Healthcare Capitation Program? A Game Theoretical Analysis

按人头付费 精算学 选择(遗传算法) 逆向选择 付款 业务 激励 财务风险 医疗保健 不完美的 风险分析(工程) 经济 微观经济学 计算机科学 财务 语言学 哲学 人工智能 经济增长
作者
Zhaowei She,Turgay Ayer,Daniel Montanera
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:24 (6): 3117-3134 被引量:6
标识
DOI:10.1287/msom.2022.1127
摘要

Problem definition: This paper analyzes a market design problem in Medicare Advantage (MA), the largest risk-adjusted capitation payment program in the U.S. healthcare market. Evidence exists that the current MA capitation payment program unintentionally incentivizes health plans to cherry pick profitable patient types, which is referred to as “risk selection”. However, the root causes of the risk selection are not comprehensively understood, which we study in this paper. Academic / Practical Relevance: The existing literature primarily attributes the observed risk selection in MA market to data limitations and low explanatory power (e.g. low R 2 ) of the current risk adjustment design. As a result, the current understanding and expectation are that risk selection would gradually disappear over time with increased availability of big data. However, if informationally imperfect risk adjustment is not the only cause of risk selection, big data would provide false assurance to key stakeholders, which we investigate in this paper. Given that risk-adjusted capitation payment models have been increasingly adopted by payers in the U.S., our study would be of primary interest to payers, providers and policy makers in the healthcare market. Results: This paper shows that big data alone cannot cure risk selection in the MA capitation program. In particular, we show that even if the current MA risk adjustment design became informationally perfect (e.g. R 2 = 1), health plans would still have incentives to conduct risk selection, as imperfect risk adjustment is not the only cause of risk selection in the MA market. More specifically, we show that incentives would continue to persist for risk selection in the age of big data through strategically subsidizing some subgroups of patients using capitation payments collected from other subgroups, which we call “risk selection induced by cross subsidization.” We further propose a simple mechanism to address this risk selection problem induced by cross subsidization in MA. Methodology: We construct a game-theoretical model to derive the MA capitation rates under informationally perfect risk adjustment, and show that these capitation rates cannot eliminate risk selection in MA. Managerial Implications: To eliminate risk selection, payers should modify their current capitation mechanisms to take into account the cross subsidization incentives, as proposed in this paper. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.1127 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助gdh采纳,获得10
刚刚
善学以致用应助WilliamChan采纳,获得10
2秒前
健康富裕完成签到,获得积分10
2秒前
2秒前
小白杨完成签到,获得积分10
2秒前
共享精神应助科研小白采纳,获得10
2秒前
3秒前
3秒前
狮子完成签到,获得积分10
3秒前
3秒前
whq531608发布了新的文献求助30
3秒前
3秒前
吕曼发布了新的文献求助10
3秒前
3秒前
wbc_wbc发布了新的文献求助10
4秒前
手残症完成签到,获得积分10
4秒前
4秒前
健康富裕发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
ddsvdv发布了新的文献求助10
6秒前
7秒前
喵咪西西完成签到,获得积分10
7秒前
Ssss发布了新的文献求助10
7秒前
79发布了新的文献求助20
7秒前
36456657应助王汐采纳,获得10
7秒前
7秒前
8秒前
9秒前
9秒前
风花雪月发布了新的文献求助10
9秒前
儒雅的芷文完成签到,获得积分10
10秒前
10秒前
10秒前
棒呆发布了新的文献求助10
12秒前
Jasper应助幸福采柳采纳,获得10
12秒前
岳哥发布了新的文献求助10
13秒前
gdh发布了新的文献求助10
13秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328293
求助须知:如何正确求助?哪些是违规求助? 2958349
关于积分的说明 8590122
捐赠科研通 2636664
什么是DOI,文献DOI怎么找? 1443107
科研通“疑难数据库(出版商)”最低求助积分说明 668515
邀请新用户注册赠送积分活动 655740