PredAoDP: Accurate identification of antioxidant proteins by fusing different descriptors based on evolutionary information with support vector machine

支持向量机 水准点(测量) 人工智能 特征(语言学) 一般化 计算机科学 鉴定(生物学) 模式识别(心理学) 特征向量 机器学习 数学 生物 数学分析 哲学 植物 语言学 地理 大地测量学
作者
Saeed Ahmad,Muhammad Arif,Muhammad Kabir,Khaistah Khan,Yaser Daanial Khan
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:228: 104623-104623 被引量:4
标识
DOI:10.1016/j.chemolab.2022.104623
摘要

Antioxidant proteins play a vital role in diseases prevention caused by free radical intermediates. Accurate identification of antioxidant proteins may provide significant clues to improve their fundamental understanding in the field of bioinformatics and pharmacology. Prediction of antioxidant protein is meaningful and a challenging task. In this study, we develop a novel predictor called PredAoDP based on two different descriptors, which incorporates salient evolutionary profile features with support vector machine (SVM), to predict antioxidant proteins. The evolutionary information in the PSI-BLAST profile is encoded and transformed into a series of fixed-length feature vectors by extracting 20-D, amino acid composition and 400-D bigram features from position-specific scoring matrix (PSSM). As a result, a feature vector of 420-dimensional (420-D) feature vector via serial combination was constructed from two training datasets of antioxidant protein Z1 and Z2. The descriptors are then fed to the SVM for classification along with jack-knife cross-validation test method for evaluating the prediction performance. Our proposed intelligent predictor achieved ACC, 93.18% and MCC, 0.712 for Z1 similarly for Z2 datasets ACC, 97.89% and MCC, 0.949 by jack-knife cross-validation test. To evaluate the generalization abilities of the developed method, we performed an independent test and achieved superior performance compared the other published approaches. The experimental results revealed the effectiveness of the proposed approach and can be utilized as a reliable tool for predicting large-scale antioxidant proteins in particular and other proteins in general. The source code and benchmark datasets are available at https://github.com/saeed344/PreAoDp.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助钮小童采纳,获得10
刚刚
cy完成签到,获得积分20
2秒前
李想发布了新的文献求助30
2秒前
lalala发布了新的文献求助10
3秒前
luanshi完成签到,获得积分10
4秒前
乐乐完成签到,获得积分10
7秒前
8秒前
zqwm发布了新的文献求助10
9秒前
小马甲应助WXJ采纳,获得10
10秒前
慕青应助西西弗采纳,获得10
11秒前
bkagyin应助圆圆的波仔采纳,获得10
12秒前
13秒前
羊村第一巴图鲁完成签到,获得积分10
13秒前
脑洞疼应助舒桐采纳,获得10
14秒前
假面绅士发布了新的文献求助10
16秒前
APPLE完成签到 ,获得积分10
17秒前
DJ完成签到,获得积分10
19秒前
20秒前
赘婿应助可靠的南霜采纳,获得10
20秒前
柿子霖关注了科研通微信公众号
20秒前
星辰大海应助321采纳,获得10
21秒前
大模型应助skyinner采纳,获得10
22秒前
tigerandcar发布了新的文献求助10
23秒前
23秒前
不吃榴莲完成签到,获得积分10
23秒前
24秒前
xu发布了新的文献求助20
25秒前
WXJ发布了新的文献求助10
25秒前
26秒前
猫车高手完成签到,获得积分10
26秒前
科研小白发布了新的文献求助10
27秒前
28秒前
西西弗发布了新的文献求助10
28秒前
赵荣完成签到,获得积分10
28秒前
30秒前
小樊同学发布了新的文献求助10
30秒前
31秒前
火星上问柳完成签到,获得积分20
32秒前
舒桐发布了新的文献求助10
32秒前
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141624
求助须知:如何正确求助?哪些是违规求助? 2792563
关于积分的说明 7803506
捐赠科研通 2448811
什么是DOI,文献DOI怎么找? 1302925
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601240