PredAoDP: Accurate identification of antioxidant proteins by fusing different descriptors based on evolutionary information with support vector machine

支持向量机 水准点(测量) 人工智能 特征(语言学) 一般化 计算机科学 鉴定(生物学) 模式识别(心理学) 特征向量 机器学习 数学 生物 数学分析 哲学 植物 语言学 地理 大地测量学
作者
Saeed Ahmad,Muhammad Arif,Muhammad Kabir,Khaistah Khan,Yaser Daanial Khan
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:228: 104623-104623 被引量:4
标识
DOI:10.1016/j.chemolab.2022.104623
摘要

Antioxidant proteins play a vital role in diseases prevention caused by free radical intermediates. Accurate identification of antioxidant proteins may provide significant clues to improve their fundamental understanding in the field of bioinformatics and pharmacology. Prediction of antioxidant protein is meaningful and a challenging task. In this study, we develop a novel predictor called PredAoDP based on two different descriptors, which incorporates salient evolutionary profile features with support vector machine (SVM), to predict antioxidant proteins. The evolutionary information in the PSI-BLAST profile is encoded and transformed into a series of fixed-length feature vectors by extracting 20-D, amino acid composition and 400-D bigram features from position-specific scoring matrix (PSSM). As a result, a feature vector of 420-dimensional (420-D) feature vector via serial combination was constructed from two training datasets of antioxidant protein Z1 and Z2. The descriptors are then fed to the SVM for classification along with jack-knife cross-validation test method for evaluating the prediction performance. Our proposed intelligent predictor achieved ACC, 93.18% and MCC, 0.712 for Z1 similarly for Z2 datasets ACC, 97.89% and MCC, 0.949 by jack-knife cross-validation test. To evaluate the generalization abilities of the developed method, we performed an independent test and achieved superior performance compared the other published approaches. The experimental results revealed the effectiveness of the proposed approach and can be utilized as a reliable tool for predicting large-scale antioxidant proteins in particular and other proteins in general. The source code and benchmark datasets are available at https://github.com/saeed344/PreAoDp.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ztt发布了新的文献求助10
2秒前
2秒前
HHHHTTTT发布了新的文献求助10
2秒前
2秒前
科研通AI5应助zhuzi采纳,获得10
3秒前
3秒前
3秒前
3秒前
bella发布了新的文献求助10
3秒前
JL完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
木木应助律齐采纳,获得10
6秒前
阿旭完成签到,获得积分10
7秒前
陆小凤发布了新的文献求助10
8秒前
8秒前
123发布了新的文献求助10
8秒前
哈尔婧完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
天天快乐应助bella采纳,获得10
12秒前
大溺发布了新的文献求助10
13秒前
14秒前
围炉夜话完成签到,获得积分10
14秒前
小马甲应助ztt采纳,获得10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
zz发布了新的文献求助20
17秒前
扬州应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得30
18秒前
18秒前
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
tramp应助科研通管家采纳,获得20
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126