Adaptive Cloud Bundle Provisioning and Multi-Workflow Scheduling via Coalition Reinforcement Learning

供应 计算机科学 云计算 分布式计算 工作流程 强化学习 调度(生产过程) 捆绑 人工智能 数据库 计算机网络 操作系统 运营管理 复合材料 经济 材料科学
作者
Jian Cao,Jian Cao,Rajkumar Buyya
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:72 (4): 1041-1054 被引量:4
标识
DOI:10.1109/tc.2022.3191733
摘要

The efficient cloud resource provisioning for the execution of complex workflow applications has always been one of the important research issues. Most of the existing approaches focus on the resource provisioning of single-type virtual machine (VM) instances for the single or multiple workflows, while few consider the situation of provisioning multi-type VM instances simultaneously. As a result, the executing performance of complex workflows degrades. Different from the existing work, this paper proposes an adaptive cloud bundle provisioning and multi-workflow scheduling model to dynamically perform both the horizontal and vertical cloud resource scaling on multi-type VM instances for the execution of complex workflows. Among the model, a depth-first-search coalition reinforcement learning (DFSCRL) provisioning policy is presented to realize the resource scaling, which integrates the physical machine (PM) coalition formation with the Q-learning algorithm, then dynamically generates an optimal multi-type VM instance bundle from the PM coalition, and finally provisions these instances to the concurrent execution of multiple workflows. The theoretical proofs and various experiments with the multifaceted metrics demonstrate that the performance of the proposed algorithms is superior to that of the state-of-the-art relevant policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光电彭于晏完成签到,获得积分10
1秒前
owl完成签到,获得积分10
1秒前
Zac应助zlp采纳,获得10
2秒前
研友_闾丘枫完成签到,获得积分10
2秒前
王粒发布了新的文献求助10
3秒前
丘比特应助和谐的果汁采纳,获得30
4秒前
4秒前
4秒前
蓝冰完成签到,获得积分10
5秒前
5秒前
wangxiaogua发布了新的文献求助10
6秒前
无花果应助康康采纳,获得10
6秒前
浦肯野应助adeno采纳,获得70
6秒前
汤谷栽扶桑完成签到,获得积分10
7秒前
7秒前
guard发布了新的文献求助10
8秒前
xiangyx发布了新的文献求助10
9秒前
9秒前
Bruce发布了新的文献求助10
10秒前
健壮的惠发布了新的文献求助10
10秒前
10秒前
10秒前
Agernon应助冷静谷兰采纳,获得10
11秒前
12秒前
康康完成签到,获得积分10
13秒前
大模型应助QQQQQQQ采纳,获得10
13秒前
Linazhu发布了新的文献求助10
13秒前
陶醉的纲完成签到,获得积分10
13秒前
14秒前
共享精神应助SAMO2023采纳,获得10
14秒前
14秒前
weirdo发布了新的文献求助10
15秒前
15秒前
ding应助周zhou采纳,获得10
15秒前
传奇3应助冷酸灵采纳,获得10
15秒前
15秒前
Owen应助冷酸灵采纳,获得10
15秒前
汉堡包应助冷酸灵采纳,获得10
16秒前
香蕉觅云应助冷酸灵采纳,获得10
16秒前
科研通AI5应助冷酸灵采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555076
求助须知:如何正确求助?哪些是违规求助? 3130818
关于积分的说明 9388790
捐赠科研通 2830291
什么是DOI,文献DOI怎么找? 1555914
邀请新用户注册赠送积分活动 726331
科研通“疑难数据库(出版商)”最低求助积分说明 715716