已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Intelligent Path Planning of Underwater Robot Based on Reinforcement Learning

运动规划 水下 强化学习 避障 障碍物 机器人 计算机科学 路径(计算) 理论(学习稳定性) 实时计算 人工智能 移动机器人 机器学习 海洋学 法学 程序设计语言 地质学 政治学
作者
Jiachen Yang,Jingfei Ni,Meng Xi,Jiabao Wen,Yang Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 1983-1996 被引量:38
标识
DOI:10.1109/tase.2022.3190901
摘要

As one of the commonly used vehicles for underwater detection, underwater robots are facing a series of problems. The real underwater environment is large-scale, complex, real-time and dynamic, and many unknown obstacles may exist in the underwater environment. Under such complex conditions and lack of prior knowledge, the existing path planning methods are difficult to plan, therefore they cannot effectively meet the actual demands. In response to these problems, a three-dimensional marine environment including multiple obstacles is established with the real ocean current data in this paper, which is consistent with the actual application scenarios. Then, we propose an N-step Priority Double DQN (NPDDQN) path planning algorithm, which potently realizes obstacle avoidance in the complex environment. In addition, this study proposes an experience screening mechanism, which screens the explored positive experience and improves its reuse rate, thus efficiently improving the algorithm stability in the dynamic environment. This paper verifies the better performance of reinforcement learning compared with a variety of traditional methods in three-dimensional underwater path planning. Underwater robots based on the proposed method have good autonomy and stability, which provides a new method for path planning of underwater robots. Note to Practitioners —The goal of this study is to provide a new solution for obstacle avoidance in path planning of underwater robots, which is consistent with the dynamic and real-time demands of the real environment. Existing underwater path planning researches lack a consistent environment with the actual application, and therefore we firstly construct a three-dimensional ocean environment with real ocean current data to provide support for the algorithms. Additionally, most of the algorithms are pre-planning methods or require long-time calculation, and there is little research on obstacle avoidance. In the face of obstacle changes, underwater robots with poor adaptability will cause performance decline and even economic losses. The proposed algorithm learns through interaction with the environment, and therefore it does not require any prior experience, and has good adaptability as well as fast inference speed. Especially, in the dynamic environment, algorithm performance is difficult to guarantee due to less positive experience in exploration. The proposed experience screening mechanism improves the stability of the algorithm, so that the underwater robot maintains stable performance in different dynamic environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
abc123发布了新的文献求助10
刚刚
再见不难发布了新的文献求助10
刚刚
秀丽惋清完成签到 ,获得积分10
刚刚
三七发布了新的文献求助10
刚刚
刚刚
CodeCraft应助popo采纳,获得10
1秒前
后山种仙草完成签到,获得积分10
3秒前
3秒前
怡然的冰露完成签到,获得积分10
4秒前
zzz完成签到,获得积分10
4秒前
谢谢谢发布了新的文献求助10
4秒前
6秒前
6秒前
鲤鱼初柳完成签到 ,获得积分10
7秒前
Delight完成签到 ,获得积分0
10秒前
科研通AI6应助怡然的冰露采纳,获得30
10秒前
衾空发布了新的文献求助10
11秒前
WW完成签到,获得积分20
12秒前
CodeCraft应助木子采纳,获得10
13秒前
13秒前
852应助John采纳,获得10
14秒前
15秒前
16秒前
我是老大应助Breeze采纳,获得10
17秒前
科目三应助优美紫槐采纳,获得10
17秒前
Hello应助hbWang采纳,获得10
18秒前
yaoli0823发布了新的文献求助30
18秒前
18秒前
18秒前
19秒前
19秒前
DDDSK发布了新的文献求助30
20秒前
20秒前
科研通AI6应助科研小魏采纳,获得10
22秒前
John完成签到,获得积分10
22秒前
22秒前
Lee发布了新的文献求助10
23秒前
24秒前
木子发布了新的文献求助10
24秒前
左手写情发布了新的文献求助30
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650215
求助须知:如何正确求助?哪些是违规求助? 4780069
关于积分的说明 15051513
捐赠科研通 4809083
什么是DOI,文献DOI怎么找? 2572018
邀请新用户注册赠送积分活动 1528258
关于科研通互助平台的介绍 1487075