Intelligent Path Planning of Underwater Robot Based on Reinforcement Learning

运动规划 水下 强化学习 避障 障碍物 机器人 计算机科学 路径(计算) 理论(学习稳定性) 实时计算 人工智能 移动机器人 机器学习 海洋学 法学 程序设计语言 地质学 政治学
作者
Jiachen Yang,Jingfei Ni,Meng Xi,Jiabao Wen,Yang Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 1983-1996 被引量:25
标识
DOI:10.1109/tase.2022.3190901
摘要

As one of the commonly used vehicles for underwater detection, underwater robots are facing a series of problems. The real underwater environment is large-scale, complex, real-time and dynamic, and many unknown obstacles may exist in the underwater environment. Under such complex conditions and lack of prior knowledge, the existing path planning methods are difficult to plan, therefore they cannot effectively meet the actual demands. In response to these problems, a three-dimensional marine environment including multiple obstacles is established with the real ocean current data in this paper, which is consistent with the actual application scenarios. Then, we propose an N-step Priority Double DQN (NPDDQN) path planning algorithm, which potently realizes obstacle avoidance in the complex environment. In addition, this study proposes an experience screening mechanism, which screens the explored positive experience and improves its reuse rate, thus efficiently improving the algorithm stability in the dynamic environment. This paper verifies the better performance of reinforcement learning compared with a variety of traditional methods in three-dimensional underwater path planning. Underwater robots based on the proposed method have good autonomy and stability, which provides a new method for path planning of underwater robots. Note to Practitioners —The goal of this study is to provide a new solution for obstacle avoidance in path planning of underwater robots, which is consistent with the dynamic and real-time demands of the real environment. Existing underwater path planning researches lack a consistent environment with the actual application, and therefore we firstly construct a three-dimensional ocean environment with real ocean current data to provide support for the algorithms. Additionally, most of the algorithms are pre-planning methods or require long-time calculation, and there is little research on obstacle avoidance. In the face of obstacle changes, underwater robots with poor adaptability will cause performance decline and even economic losses. The proposed algorithm learns through interaction with the environment, and therefore it does not require any prior experience, and has good adaptability as well as fast inference speed. Especially, in the dynamic environment, algorithm performance is difficult to guarantee due to less positive experience in exploration. The proposed experience screening mechanism improves the stability of the algorithm, so that the underwater robot maintains stable performance in different dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何果果完成签到,获得积分10
2秒前
老朱完成签到,获得积分10
2秒前
5秒前
平常的镜子完成签到,获得积分10
6秒前
alixy完成签到,获得积分10
7秒前
廖元枫发布了新的文献求助30
8秒前
信封完成签到 ,获得积分10
8秒前
玲家傻妞完成签到 ,获得积分10
8秒前
9秒前
搞怪的小粉完成签到,获得积分10
9秒前
10秒前
10秒前
Xiehf完成签到,获得积分10
12秒前
raoxray完成签到 ,获得积分10
13秒前
孤海未蓝完成签到,获得积分10
13秒前
清澄发布了新的文献求助10
13秒前
14秒前
15秒前
万事屋完成签到 ,获得积分10
16秒前
负责向真发布了新的文献求助10
17秒前
蜗牛fei完成签到,获得积分10
18秒前
18秒前
廖元枫完成签到,获得积分10
18秒前
张颜发布了新的文献求助10
21秒前
12完成签到,获得积分10
22秒前
活泼的匕完成签到 ,获得积分10
22秒前
靓丽的花卷完成签到,获得积分10
22秒前
夕荀完成签到,获得积分10
23秒前
SciGPT应助little elvins采纳,获得10
24秒前
Remorn完成签到,获得积分10
25秒前
翁雁丝完成签到 ,获得积分10
26秒前
宁夕完成签到 ,获得积分10
26秒前
yy完成签到 ,获得积分10
26秒前
lizh187完成签到 ,获得积分10
27秒前
科研螺丝完成签到 ,获得积分10
27秒前
丰富新儿完成签到,获得积分10
29秒前
NovermberRain完成签到,获得积分10
29秒前
CipherSage应助科研通管家采纳,获得10
30秒前
萌芽完成签到 ,获得积分10
30秒前
ding应助科研通管家采纳,获得10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150658
求助须知:如何正确求助?哪些是违规求助? 2802207
关于积分的说明 7846456
捐赠科研通 2459547
什么是DOI,文献DOI怎么找? 1309286
科研通“疑难数据库(出版商)”最低求助积分说明 628821
版权声明 601757