Intelligent Path Planning of Underwater Robot Based on Reinforcement Learning

运动规划 水下 强化学习 避障 障碍物 机器人 计算机科学 路径(计算) 理论(学习稳定性) 实时计算 人工智能 移动机器人 机器学习 海洋学 法学 程序设计语言 地质学 政治学
作者
Jiachen Yang,Jingfei Ni,Meng Xi,Jiabao Wen,Yang Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 1983-1996 被引量:38
标识
DOI:10.1109/tase.2022.3190901
摘要

As one of the commonly used vehicles for underwater detection, underwater robots are facing a series of problems. The real underwater environment is large-scale, complex, real-time and dynamic, and many unknown obstacles may exist in the underwater environment. Under such complex conditions and lack of prior knowledge, the existing path planning methods are difficult to plan, therefore they cannot effectively meet the actual demands. In response to these problems, a three-dimensional marine environment including multiple obstacles is established with the real ocean current data in this paper, which is consistent with the actual application scenarios. Then, we propose an N-step Priority Double DQN (NPDDQN) path planning algorithm, which potently realizes obstacle avoidance in the complex environment. In addition, this study proposes an experience screening mechanism, which screens the explored positive experience and improves its reuse rate, thus efficiently improving the algorithm stability in the dynamic environment. This paper verifies the better performance of reinforcement learning compared with a variety of traditional methods in three-dimensional underwater path planning. Underwater robots based on the proposed method have good autonomy and stability, which provides a new method for path planning of underwater robots. Note to Practitioners —The goal of this study is to provide a new solution for obstacle avoidance in path planning of underwater robots, which is consistent with the dynamic and real-time demands of the real environment. Existing underwater path planning researches lack a consistent environment with the actual application, and therefore we firstly construct a three-dimensional ocean environment with real ocean current data to provide support for the algorithms. Additionally, most of the algorithms are pre-planning methods or require long-time calculation, and there is little research on obstacle avoidance. In the face of obstacle changes, underwater robots with poor adaptability will cause performance decline and even economic losses. The proposed algorithm learns through interaction with the environment, and therefore it does not require any prior experience, and has good adaptability as well as fast inference speed. Especially, in the dynamic environment, algorithm performance is difficult to guarantee due to less positive experience in exploration. The proposed experience screening mechanism improves the stability of the algorithm, so that the underwater robot maintains stable performance in different dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ycxlb完成签到,获得积分10
2秒前
houyan发布了新的文献求助10
2秒前
4秒前
开心苠完成签到 ,获得积分10
5秒前
喵2完成签到,获得积分10
8秒前
xx发布了新的文献求助10
8秒前
9秒前
锦鲤完成签到,获得积分10
10秒前
bkagyin应助houyan采纳,获得10
11秒前
田帅完成签到,获得积分20
11秒前
abtx314发布了新的文献求助10
12秒前
科研通AI5应助吃人陈采纳,获得10
13秒前
13秒前
gmugyy完成签到,获得积分10
13秒前
xx完成签到,获得积分10
14秒前
enen发布了新的文献求助10
14秒前
在水一方应助Sijing采纳,获得10
14秒前
希望天下0贩的0应助林森采纳,获得10
15秒前
李大了发布了新的文献求助10
16秒前
可爱的函函应助LQ采纳,获得10
16秒前
xy发布了新的文献求助10
17秒前
17秒前
李健应助Ayan采纳,获得10
19秒前
思琪HMH发布了新的文献求助10
19秒前
赘婿应助苜久久采纳,获得10
20秒前
汪汪完成签到,获得积分10
20秒前
Liou完成签到,获得积分0
20秒前
21秒前
慕青应助安详的语蕊采纳,获得10
21秒前
田様应助锦鲤采纳,获得10
22秒前
22秒前
22秒前
YangyangLiu完成签到,获得积分10
22秒前
李彦磊完成签到,获得积分10
23秒前
大模型应助enen采纳,获得10
23秒前
23秒前
avogadro发布了新的文献求助10
24秒前
李晨源发布了新的文献求助10
25秒前
26秒前
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999793
求助须知:如何正确求助?哪些是违规求助? 3539210
关于积分的说明 11276221
捐赠科研通 3277890
什么是DOI,文献DOI怎么找? 1807763
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142