CGTF: Convolution-Guided Transformer for Infrared and Visible Image Fusion

人工智能 特征提取 变压器 计算机科学 模式识别(心理学) 卷积(计算机科学) 卷积神经网络 特征学习 计算机视觉 人工神经网络 工程类 电压 电气工程
作者
Jing Li,Jianming Zhu,Chang Li,Xun Chen,Bin Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:61
标识
DOI:10.1109/tim.2022.3175055
摘要

Deep learning has been successfully applied to infrared and visible image fusion due to its powerful ability of feature representation. Existing most deep learning based infrared and visible image fusion methods mainly utilize pure convolution model or pure transformer model, which leads to that the fused image cannot preserve long-range dependencies (global context) and local features simultaneously. To this end, we propose a convolution-guided transformer framework for infrared and visible image fusion (CGTF), which aims to combine the local features of convolutional network and the long-range dependency features of transformer to produce satisfactory fused image. In CGTF, the local features are calculated by convolution feature extraction module, and then the local features are used to guide the transformer feature extraction module to capture the long-range dependencies of the image, which can overcome not only the lack of long-range dependencies that exists in convolutional fusion methods, but also the deficiency of local feature that exists in transformer models. Moreover, the convolution-guided transformer fusion framework can consider the inherent relationship of local feature and long-range dependencies due to the alternate use of convolution feature extraction module and transformer module. In addition, to strengthen local feature propagation, we employ dense connections among convolution feature extraction modules. Ablation experiments demonstrate the effectiveness of convolution-guided transformer fusion framework and loss function. We employ two datasets to compare our method with other nine methods, which includes three traditional methods, five deep learning based methods and one transformer based method. Qualitative and quantitative experiments demonstrate the advantages of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunly发布了新的文献求助10
刚刚
阿亮完成签到,获得积分10
1秒前
1秒前
lienafeihu发布了新的文献求助10
1秒前
葱油饼完成签到,获得积分10
2秒前
微纳组刘同完成签到,获得积分10
3秒前
Zuzim发布了新的文献求助10
3秒前
Tempo完成签到,获得积分10
3秒前
4秒前
天天快乐应助xzg111采纳,获得10
4秒前
小菅发布了新的文献求助10
4秒前
CLN完成签到,获得积分10
4秒前
lingjuanwu完成签到,获得积分10
5秒前
花生王子发布了新的文献求助30
5秒前
菠萝完成签到 ,获得积分10
5秒前
简单冰淇淋完成签到,获得积分10
6秒前
taoliu发布了新的文献求助10
7秒前
丘比特应助Janny采纳,获得10
7秒前
12完成签到,获得积分10
7秒前
老鼠爱吃fish完成签到,获得积分0
8秒前
branka完成签到,获得积分10
8秒前
8秒前
852应助xly采纳,获得10
8秒前
木木完成签到 ,获得积分10
9秒前
Dawn完成签到,获得积分10
9秒前
nanlinhua完成签到,获得积分10
10秒前
Zircon完成签到 ,获得积分10
10秒前
科研通AI2S应助YC采纳,获得10
10秒前
huahua应助呜呜采纳,获得10
10秒前
11秒前
11秒前
寒冷孤风发布了新的文献求助10
11秒前
江莱发布了新的文献求助10
11秒前
鸿渐于陆完成签到,获得积分10
11秒前
unqiue发布了新的文献求助10
11秒前
12秒前
慕青应助单薄静枫采纳,获得10
13秒前
湘江雨完成签到,获得积分10
13秒前
13秒前
帆帆牛完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950435
求助须知:如何正确求助?哪些是违规求助? 3495874
关于积分的说明 11079268
捐赠科研通 3226319
什么是DOI,文献DOI怎么找? 1783751
邀请新用户注册赠送积分活动 867787
科研通“疑难数据库(出版商)”最低求助积分说明 800942