CGTF: Convolution-Guided Transformer for Infrared and Visible Image Fusion

人工智能 特征提取 变压器 计算机科学 模式识别(心理学) 卷积(计算机科学) 卷积神经网络 特征学习 计算机视觉 人工神经网络 工程类 电压 电气工程
作者
Jing Li,Jianming Zhu,Chang Li,Xun Chen,Bin Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-14 被引量:57
标识
DOI:10.1109/tim.2022.3175055
摘要

Deep learning has been successfully applied to infrared and visible image fusion due to its powerful ability of feature representation. Existing most deep learning based infrared and visible image fusion methods mainly utilize pure convolution model or pure transformer model, which leads to that the fused image cannot preserve long-range dependencies (global context) and local features simultaneously. To this end, we propose a convolution-guided transformer framework for infrared and visible image fusion (CGTF), which aims to combine the local features of convolutional network and the long-range dependency features of transformer to produce satisfactory fused image. In CGTF, the local features are calculated by convolution feature extraction module, and then the local features are used to guide the transformer feature extraction module to capture the long-range dependencies of the image, which can overcome not only the lack of long-range dependencies that exists in convolutional fusion methods, but also the deficiency of local feature that exists in transformer models. Moreover, the convolution-guided transformer fusion framework can consider the inherent relationship of local feature and long-range dependencies due to the alternate use of convolution feature extraction module and transformer module. In addition, to strengthen local feature propagation, we employ dense connections among convolution feature extraction modules. Ablation experiments demonstrate the effectiveness of convolution-guided transformer fusion framework and loss function. We employ two datasets to compare our method with other nine methods, which includes three traditional methods, five deep learning based methods and one transformer based method. Qualitative and quantitative experiments demonstrate the advantages of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芋头完成签到,获得积分10
刚刚
ntxiaohu完成签到,获得积分10
1秒前
四火完成签到,获得积分10
1秒前
1秒前
一裤子灰完成签到,获得积分10
1秒前
SamuelLiu完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
8R60d8应助松子采纳,获得10
2秒前
2秒前
我来回收数据完成签到,获得积分10
3秒前
欣忆完成签到 ,获得积分10
3秒前
复原乳完成签到,获得积分10
3秒前
4秒前
四火发布了新的文献求助10
4秒前
Rui发布了新的文献求助10
4秒前
白宝宝北北白应助dfggg采纳,获得10
5秒前
阳光海云发布了新的文献求助50
5秒前
小胖鱼关注了科研通微信公众号
5秒前
昏睡的眼神完成签到 ,获得积分10
5秒前
NexusExplorer应助南乔采纳,获得10
5秒前
杜嘟嘟发布了新的文献求助10
5秒前
完美世界应助April采纳,获得10
6秒前
提手旁辰完成签到,获得积分20
6秒前
能干的邹完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
酒九完成签到,获得积分10
7秒前
刺槐完成签到,获得积分10
7秒前
Owen应助LLKK采纳,获得30
9秒前
9秒前
9秒前
10秒前
苏鱼完成签到 ,获得积分10
10秒前
恋空完成签到 ,获得积分10
10秒前
曲终人散完成签到,获得积分10
11秒前
wu发布了新的文献求助10
11秒前
wintercyan完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740