A Correlation-Guided Layered Prediction Approach for Evolutionary Dynamic Multiobjective Optimization

多目标优化 进化算法 相关性 数学优化 计算机科学 进化计算 数学 人工智能 几何学
作者
Kunjie Yu,Dezheng Zhang,Jing Liang,Ke Chen,Caitong Yue,Kangjia Qiao,Ling Wang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 1398-1412 被引量:74
标识
DOI:10.1109/tevc.2022.3193287
摘要

When solving dynamic multiobjective optimization problems (DMOPs) by evolutionary algorithms, the historical moving directions of some special points along the Pareto front, such as the center and knee points, are widely employed to predict the Pareto-optimal solutions (POSs). However, special points may be impacted by certain individuals with a large direction deviation, and thus, mislead the tracking of dynamic POS. To solve this issue, a correlation-guided layered prediction approach for solving DMOPs is proposed in this article, where multiple prediction models are integrated by considering the correlation of individuals' moving directions. To be specific, the population is clustered into three subpopulations (i.e., high, mid, and low correlation) by correlation analysis to perform different prediction behaviors. The high correlation subpopulation aims to predict the moving direction via a linear prediction model. The mid correlation subpopulation is devoted to predicting the manifold change of POS by self-adaptively using the direction and length correction models. The diversity preservation is considered by the low correlation subpopulation. While the three subpopulations focus on different optimization tasks, they also cooperate to track the dynamic POS. The comprehensive experimental results on a variety of benchmark test problems demonstrate the superiority of the proposed approach, as compared with some state-of-the-art prediction-based dynamic multiobjective algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BareBear应助高高手采纳,获得10
刚刚
李健应助wang采纳,获得10
1秒前
1秒前
by完成签到,获得积分10
2秒前
2秒前
2秒前
清浅发布了新的文献求助30
3秒前
太想进部了完成签到,获得积分10
3秒前
3秒前
JamesPei应助干净的友卉采纳,获得10
3秒前
打打应助今天没有哭鸭采纳,获得10
3秒前
JamesPei应助易烊千玺老婆采纳,获得10
3秒前
3秒前
4秒前
852应助SYX采纳,获得30
4秒前
斯文败类应助小小小小采纳,获得10
4秒前
科研通AI6应助HAHA采纳,获得10
4秒前
坚定晓兰应助HAHA采纳,获得10
4秒前
科研通AI6应助HAHA采纳,获得10
4秒前
热心的易烟完成签到,获得积分10
4秒前
5秒前
Hello应助小学生采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
song发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
alvis关注了科研通微信公众号
7秒前
LingMg发布了新的文献求助30
8秒前
不安溪灵完成签到,获得积分10
8秒前
8秒前
8秒前
熊猫海发布了新的文献求助10
8秒前
9秒前
伞下铭发布了新的文献求助10
9秒前
9秒前
10秒前
Herzing发布了新的文献求助10
10秒前
10秒前
喜悦发卡完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002