亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Correlation-Guided Layered Prediction Approach for Evolutionary Dynamic Multiobjective Optimization

多目标优化 进化算法 相关性 数学优化 计算机科学 进化计算 数学 人工智能 几何学
作者
Kunjie Yu,Dezheng Zhang,Jing Liang,Ke Chen,Caitong Yue,Kangjia Qiao,Ling Wang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 1398-1412 被引量:49
标识
DOI:10.1109/tevc.2022.3193287
摘要

When solving dynamic multiobjective optimization problems (DMOPs) by evolutionary algorithms, the historical moving directions of some special points along the Pareto front, such as the center and knee points, are widely employed to predict the Pareto-optimal solutions (POSs). However, special points may be impacted by certain individuals with a large direction deviation, and thus, mislead the tracking of dynamic POS. To solve this issue, a correlation-guided layered prediction approach for solving DMOPs is proposed in this article, where multiple prediction models are integrated by considering the correlation of individuals' moving directions. To be specific, the population is clustered into three subpopulations (i.e., high, mid, and low correlation) by correlation analysis to perform different prediction behaviors. The high correlation subpopulation aims to predict the moving direction via a linear prediction model. The mid correlation subpopulation is devoted to predicting the manifold change of POS by self-adaptively using the direction and length correction models. The diversity preservation is considered by the low correlation subpopulation. While the three subpopulations focus on different optimization tasks, they also cooperate to track the dynamic POS. The comprehensive experimental results on a variety of benchmark test problems demonstrate the superiority of the proposed approach, as compared with some state-of-the-art prediction-based dynamic multiobjective algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助激昂的如柏采纳,获得10
2秒前
Hillson完成签到,获得积分10
3秒前
6秒前
6秒前
7秒前
奥黛丽悟空完成签到,获得积分10
9秒前
Cccsy发布了新的文献求助10
9秒前
Lesley发布了新的文献求助10
11秒前
15秒前
浮游应助吴茂林采纳,获得10
16秒前
zlk完成签到 ,获得积分10
18秒前
土豆炖大锅完成签到,获得积分10
19秒前
坚强觅珍完成签到 ,获得积分10
20秒前
Juvenilesy完成签到 ,获得积分10
21秒前
学者风范完成签到 ,获得积分10
21秒前
lsl完成签到 ,获得积分10
21秒前
英俊的铭应助YYYhl采纳,获得10
23秒前
魔幻的外套完成签到,获得积分10
23秒前
26秒前
善学以致用应助subat采纳,获得10
27秒前
章鱼完成签到,获得积分10
29秒前
12123浪发布了新的文献求助10
29秒前
31秒前
日常K人完成签到 ,获得积分10
31秒前
Cccsy完成签到,获得积分10
33秒前
36秒前
现代听枫完成签到,获得积分10
36秒前
38秒前
浮游应助吴茂林采纳,获得10
42秒前
subat发布了新的文献求助10
43秒前
49秒前
呀呀呀完成签到 ,获得积分10
50秒前
钟江完成签到,获得积分10
51秒前
科研通AI2S应助27小天使采纳,获得30
51秒前
52秒前
55秒前
56秒前
56秒前
Badada完成签到,获得积分10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301672
求助须知:如何正确求助?哪些是违规求助? 4449154
关于积分的说明 13847930
捐赠科研通 4335215
什么是DOI,文献DOI怎么找? 2380208
邀请新用户注册赠送积分活动 1375181
关于科研通互助平台的介绍 1341185