交换电流密度
介电谱
扩散
电化学
电流密度
锂(药物)
分析化学(期刊)
电池(电)
化学
电阻抗
电流(流体)
循环伏安法
电压
滴定法
等效电路
电化学动力学
材料科学
电极
热力学
无机化学
电气工程
色谱法
物理化学
医学
功率(物理)
物理
工程类
量子力学
内分泌学
塔菲尔方程
作者
Hyobin Lee,Seungwon Yang,Suhwan Kim,Jihun Song,Joonam Park,Chil‐Hoon Doh,Yoon‐Cheol Ha,Tae‐Soon Kwon,Yong Min Lee
标识
DOI:10.1016/j.coelec.2022.100986
摘要
The diffusion coefficient and exchange current density are the two dominant parameters that determine the electrochemical characteristics of the electrochemical battery model. Nevertheless, both parameter values are generally adopted from well-known literature or experimental data measured under limited conditions and are sometimes overfitted to match actual electrochemical behaviors without full consideration. Herein, the diffusion coefficients and exchange current densities of a LiNi0·4Mn0·3Co0·3O2/Li cell are measured and applied to the electrochemical model (based on Newman's model) using four different electrochemical methods: galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Without any fitting, the model adopting the diffusion coefficient and exchange current density measured from PITT and EIS, respectively, simulates the actual voltage–capacity profiles well. Thus, this case study provides a valuable opportunity to understand the advantages and disadvantages of each measurement method in obtaining key experimental parameters for electrochemical battery models.
科研通智能强力驱动
Strongly Powered by AbleSci AI