Shadow-consistent Semi-supervised Learning for Prostate Ultrasound Segmentation.

计算机科学 人工智能 影子(心理学) 分割 计算机视觉 声影 像素
作者
Xuanang Xu,Thomas Sanford,Baris Turkbey,Sheng Xu,Bradford J Wood,Pingkun Yan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tmi.2021.3139999
摘要

Prostate segmentation in transrectal ultrasound (TRUS) image is an essential prerequisite for many prostate-related clinical procedures, which, however, is also a long-standing problem due to the challenges caused by the low image quality and shadow artifacts. In this paper, we propose a Shadow-consistent Semi-supervised Learning (SCO-SSL) method with two novel mechanisms, namely shadow augmentation (Shadow-AUG) and shadow dropout (Shadow-DROP), to tackle this challenging problem. Specifically, Shadow-AUG enriches training samples by adding simulated shadow artifacts to the images to make the network robust to the shadow patterns. Shadow-DROP enforces the segmentation network to infer the prostate boundary using the neighboring shadow-free pixels. Extensive experiments are conducted on two large clinical datasets (a public dataset containing 1,761 TRUS volumes and an in-house dataset containing 662 TRUS volumes). In the fully-supervised setting, a vanilla U-Net equipped with our Shadow-AUG&Shadow-DROP outperforms the state-of-the-arts with statistical significance. In the semi-supervised setting, even with only 20% labeled training data, our SCO-SSL method still achieves highly competitive performance, suggesting great clinical value in relieving the labor of data annotation. Source code is released at https://github.com/DIAL-RPI/SCO-SSL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Rage_Wang应助Hi_aloha采纳,获得10
3秒前
4秒前
4秒前
FashionBoy应助ccccc采纳,获得10
4秒前
晨晨CC完成签到,获得积分10
6秒前
杰Sir完成签到,获得积分10
6秒前
无私的黄豆完成签到 ,获得积分10
8秒前
北辰完成签到,获得积分10
9秒前
鲤鱼火车发布了新的文献求助10
9秒前
9秒前
11秒前
上官若男应助lyyyy采纳,获得10
12秒前
天天快乐应助cumt采纳,获得10
12秒前
14秒前
小夏饭桶完成签到,获得积分10
15秒前
15秒前
westbobo发布了新的文献求助10
15秒前
16秒前
科研通AI5应助冷傲迎梅采纳,获得10
18秒前
19秒前
Siriya发布了新的文献求助10
20秒前
21秒前
yuyuyu完成签到,获得积分10
22秒前
乐乐应助五五采纳,获得10
22秒前
22秒前
22秒前
王二萌完成签到 ,获得积分10
24秒前
超级的鹅发布了新的文献求助10
24秒前
酸辣完成签到 ,获得积分10
25秒前
26秒前
26秒前
动漫大师发布了新的文献求助10
27秒前
Number_eight发布了新的文献求助10
28秒前
29秒前
Teslwang完成签到,获得积分10
29秒前
29秒前
yxsccjj完成签到 ,获得积分10
29秒前
zzZephyr应助老实的小王采纳,获得10
29秒前
DrWang发布了新的文献求助10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672384
求助须知:如何正确求助?哪些是违规求助? 3228736
关于积分的说明 9781794
捐赠科研通 2939160
什么是DOI,文献DOI怎么找? 1610638
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174