Computer vision and machine learning applied in the mushroom industry: A critical review

蘑菇 人工智能 鉴定(生物学) 机器视觉 机器学习 计算机科学 数字化 质量(理念) 工程类 生物技术 生物 计算机视觉 植物 食品科学 认识论 哲学
作者
Hua Yin,Wenlong Yi,Dian-Ming Hu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107015-107015 被引量:60
标识
DOI:10.1016/j.compag.2022.107015
摘要

Mushrooms are popular food items containing numerous vitamins, dietary fibers, and a large number of proteins. As a result, mushrooms can increase the body’s immunity and prevent many types of cancer to keep the body healthy. For these reasons, the demand for high yields and safety in the production of high-quality mushrooms is increasing. This review highlights the application of computer vision and machine learning algorithms in the mushroom industry. Through a systematic review of papers published between 1991 and 2021, this article introduces key aspects related to mushrooms (e.g., species identification and quality classification based on artificial intelligence), and discusses the advantages and disadvantages of various approaches. Numerous artificial intelligence and machine vision technologies have been implemented in research efforts focusing on edible fungi. However, their applications are generally limited to the identification of poisonous mushrooms according to their forms, the plucking of cultivated mushrooms covered by soil, and the mechanized grading of mushrooms. Clearly, the currently available methods cannot meet the requirements of the digitization and intelligentization in the field of edible mushrooms. Considering these reasons, it is possible to develop further application opportunities, such as digital mushroom phenotype determination, and high-throughput breeding based on big data, and mechanical picking by a harvesting robot as well. Therefore, the integration of computer vision and machine learning with the development of more efficient algorithms will undoubtedly be a hotspot for future studies in the context of the mushroom industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
含蓄天与完成签到 ,获得积分10
1秒前
婉晚发布了新的文献求助10
2秒前
菲菲发布了新的文献求助30
2秒前
2秒前
完美世界应助默读采纳,获得10
2秒前
2秒前
天天快乐应助zzz采纳,获得10
2秒前
bkagyin应助细心的抽屉采纳,获得10
3秒前
白小施完成签到,获得积分10
4秒前
5秒前
6秒前
明月清风完成签到,获得积分10
6秒前
科研通AI2S应助勤劳钧采纳,获得30
6秒前
FashionBoy应助maonaiqian采纳,获得10
7秒前
里涵发布了新的文献求助10
7秒前
8秒前
8秒前
科研yu发布了新的文献求助30
9秒前
9秒前
11秒前
liz发布了新的文献求助10
11秒前
CodeCraft应助Ergou采纳,获得10
11秒前
Hao发布了新的文献求助10
11秒前
11秒前
11秒前
专注纹完成签到,获得积分10
12秒前
小酒迟疑发布了新的文献求助10
12秒前
mrwill发布了新的文献求助10
12秒前
12秒前
unflycn发布了新的文献求助10
12秒前
FJM完成签到,获得积分10
14秒前
fire完成签到,获得积分10
14秒前
打打应助一一采纳,获得10
15秒前
zzz发布了新的文献求助10
16秒前
16秒前
林思完成签到,获得积分10
17秒前
17秒前
17秒前
冷艳的孤晴完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123170
求助须知:如何正确求助?哪些是违规求助? 2773659
关于积分的说明 7718928
捐赠科研通 2429325
什么是DOI,文献DOI怎么找? 1290230
科研通“疑难数据库(出版商)”最低求助积分说明 621795
版权声明 600251