亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepCQ+: Robust and Scalable Routing with Multi-Agent Deep Reinforcement Learning for Highly Dynamic Networks

计算机科学 强化学习 可扩展性 路由协议 分布式计算 稳健性(进化) 计算机网络 链路状态路由协议 无线路由协议 移动自组网 布线(电子设计自动化) 人工智能 数据库 基因 生物化学 网络数据包 化学
作者
Saeed Kaviani,Bo Ryu,Ejaz Ahmed,Kevin Larson,Anh D. Le,Alex Yahja,Jae Nyoung Kim
标识
DOI:10.1109/milcom52596.2021.9652948
摘要

Highly dynamic mobile ad-hoc networks (MANETs) remain as one of the most challenging environments to develop and deploy robust, efficient, and scalable routing protocols. In this paper, we present DeepCQ+ routing protocol which, in a novel manner, integrates emerging multi-agent deep reinforcement learning (MADRL) techniques into existing Q-learning-based routing protocols and their variants, and achieves persistently higher performance across a wide range of topology and mobility configurations. While keeping the overall protocol structure of the Q-learning-based routing protocols, DeepCQ+ replaces statically configured parameterized thresholds and hand-written rules with carefully designed MADRL agents such that no configuration of such parameters is required a priori. Extensive simulation shows that DeepCQ+ yields significantly increased end-to-end throughput with lower overhead and no apparent degradation of end-to-end delays (hop counts) compared to its Q-learning-based counterparts. Qualitatively, and perhaps more significantly, DeepCQ+ maintains remarkably similar performance gains under many scenarios that it was not trained for in terms of network sizes, mobility conditions, and traffic dynamics. To the best of our knowledge, this is the first successful application of the MADRL framework for the MANET routing problem that demonstrates a high degree of scalability and robustness even under the environments that are outside the trained range of scenarios. This implies that our MARL-based DeepCQ+ design solution significantly improves the performance of Q-learning-based CQ+ baseline approach for comparison and increases its practicality and explainability because the real-world MANET environment will likely vary outside the trained range of MANET scenarios. Additional techniques to further increase the gains in performance and scalability are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助容若采纳,获得10
7秒前
Tinlie发布了新的文献求助10
29秒前
Z小姐完成签到 ,获得积分10
34秒前
kuoping完成签到,获得积分10
36秒前
花开发布了新的文献求助10
1分钟前
香蕉觅云应助花开采纳,获得10
1分钟前
我是老大应助拟好采纳,获得10
1分钟前
caohuijun发布了新的文献求助10
2分钟前
Tinlie完成签到,获得积分20
2分钟前
2分钟前
拟好发布了新的文献求助10
2分钟前
寻道图强应助拟好采纳,获得30
3分钟前
3分钟前
4分钟前
4分钟前
cyb完成签到,获得积分10
5分钟前
iuv完成签到,获得积分10
5分钟前
Lucas应助容若采纳,获得10
5分钟前
5分钟前
中央完成签到,获得积分10
5分钟前
6分钟前
四夕发布了新的文献求助30
6分钟前
小蘑菇应助容若采纳,获得10
6分钟前
从容的盼晴完成签到,获得积分10
6分钟前
中中中完成签到 ,获得积分10
8分钟前
积极的中蓝完成签到 ,获得积分10
8分钟前
Wei发布了新的文献求助10
9分钟前
科研通AI2S应助Wei采纳,获得10
9分钟前
9分钟前
Meimei发布了新的文献求助20
9分钟前
情怀应助陈媛采纳,获得10
11分钟前
11分钟前
Meimei完成签到,获得积分10
11分钟前
陈媛发布了新的文献求助10
11分钟前
爱听歌的大地完成签到 ,获得积分10
12分钟前
荀煜祺完成签到,获得积分10
12分钟前
12分钟前
完美世界应助残酷日光采纳,获得10
14分钟前
去去去去发布了新的文献求助10
14分钟前
孙旭完成签到 ,获得积分10
14分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142692
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806988
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328