DeepCQ+: Robust and Scalable Routing with Multi-Agent Deep Reinforcement Learning for Highly Dynamic Networks

计算机科学 强化学习 可扩展性 路由协议 分布式计算 稳健性(进化) 计算机网络 链路状态路由协议 无线路由协议 移动自组网 布线(电子设计自动化) 人工智能 数据库 基因 生物化学 网络数据包 化学
作者
Saeed Kaviani,Bo Ryu,Ejaz Ahmed,Kevin A. Larson,Le Anh Ngoc,Alex Yahja,Jae H. Kim
标识
DOI:10.1109/milcom52596.2021.9652948
摘要

Highly dynamic mobile ad-hoc networks (MANETs) remain as one of the most challenging environments to develop and deploy robust, efficient, and scalable routing protocols. In this paper, we present DeepCQ+ routing protocol which, in a novel manner, integrates emerging multi-agent deep reinforcement learning (MADRL) techniques into existing Q-learning-based routing protocols and their variants, and achieves persistently higher performance across a wide range of topology and mobility configurations. While keeping the overall protocol structure of the Q-learning-based routing protocols, DeepCQ+ replaces statically configured parameterized thresholds and hand-written rules with carefully designed MADRL agents such that no configuration of such parameters is required a priori. Extensive simulation shows that DeepCQ+ yields significantly increased end-to-end throughput with lower overhead and no apparent degradation of end-to-end delays (hop counts) compared to its Q-learning-based counterparts. Qualitatively, and perhaps more significantly, DeepCQ+ maintains remarkably similar performance gains under many scenarios that it was not trained for in terms of network sizes, mobility conditions, and traffic dynamics. To the best of our knowledge, this is the first successful application of the MADRL framework for the MANET routing problem that demonstrates a high degree of scalability and robustness even under the environments that are outside the trained range of scenarios. This implies that our MARL-based DeepCQ+ design solution significantly improves the performance of Q-learning-based CQ+ baseline approach for comparison and increases its practicality and explainability because the real-world MANET environment will likely vary outside the trained range of MANET scenarios. Additional techniques to further increase the gains in performance and scalability are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净斑马发布了新的文献求助10
刚刚
cocobear完成签到 ,获得积分10
1秒前
不如看海完成签到 ,获得积分10
2秒前
2秒前
直率心锁完成签到,获得积分10
3秒前
3秒前
5秒前
青街向晚发布了新的文献求助10
6秒前
顺心的墨镜完成签到,获得积分10
7秒前
时光倒流的鱼完成签到,获得积分10
7秒前
xzz完成签到,获得积分10
7秒前
认真的画板完成签到,获得积分10
8秒前
温柔的蛋挞完成签到,获得积分10
8秒前
8秒前
和光同尘发布了新的文献求助10
8秒前
标致冬日完成签到,获得积分10
10秒前
黄瓜橙橙发布了新的文献求助10
11秒前
11秒前
Haley完成签到,获得积分10
11秒前
12秒前
我爱科研完成签到 ,获得积分10
12秒前
研学弟完成签到,获得积分10
13秒前
忧心的红酒完成签到,获得积分10
14秒前
15秒前
小瓶盖完成签到 ,获得积分10
15秒前
绍成完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
Dailei发布了新的文献求助10
17秒前
bkagyin应助tyzsail采纳,获得10
17秒前
jia完成签到,获得积分10
17秒前
luo完成签到 ,获得积分10
18秒前
MOMO完成签到 ,获得积分10
18秒前
zsj完成签到,获得积分10
20秒前
20秒前
还单身的湘完成签到,获得积分10
21秒前
我是老大应助忧心的红酒采纳,获得10
21秒前
22秒前
yin景景完成签到,获得积分10
22秒前
22秒前
Dailei完成签到,获得积分10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027