3D time-lapse imaging of a mouse embryo using intensity diffraction tomography embedded inside a deep learning framework

光学 光学切片 折射率 显微镜 材料科学 物理
作者
William Pierré,Lionel Hervé,Chiara Paviolo,Ondřej Mandula,Vincent Remondiere,Sophie Morales,Sergei Grudinin,Pierre F. Ray,Magali Dhellemmes,Christophe Arnoult,Cédric Allier
出处
期刊:Applied Optics [The Optical Society]
卷期号:61 (12): 3337-3337 被引量:16
标识
DOI:10.1364/ao.453910
摘要

We present a compact 3D diffractive microscope that can be inserted directly in a cell incubator for long-term observation of developing organisms. Our setup is particularly simple and robust, since it does not include any moving parts and is compatible with commercial cell culture containers. It has been designed to image large specimens (>100×100×100µm3) with subcellular resolution. The sample's optical properties [refractive index (RI) and absorption] are reconstructed in 3D from intensity-only images recorded with different illumination angles produced by an LED array. The reconstruction is performed using the beam propagation method embedded inside a deep-learning network where the layers encode the optical properties of the object. This deep neural network is trained for a given multiangle intensity acquisition. After training, the weights of the neural network deliver the 3D distribution of the optical properties of the sample. The effect of spherical aberrations due to the sample holder/air interfaces are taken into account in the forward model. Using this approach, we performed time-lapse 3D imaging of preimplantation mouse embryos over six days. Images of embryos from a single cell (low-scattering regime) to the blastocyst stage (highly scattering regime) were successfully reconstructed. Due to its subcellular resolution, our system can provide quantitative information on the embryos' development and viability. Hence, this technology opens what we believe to be novel opportunities for 3D label-free live-cell imaging of whole embryos or organoids over long observation times.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
飞翔的小鸟完成签到 ,获得积分10
3秒前
Grace完成签到,获得积分10
6秒前
椰汁完成签到 ,获得积分10
11秒前
舒心的雍发布了新的文献求助10
12秒前
aqslbydxyy完成签到 ,获得积分10
14秒前
哎咿呀哎呀完成签到,获得积分10
14秒前
Emi完成签到 ,获得积分10
16秒前
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
20秒前
赘婿应助科研通管家采纳,获得10
21秒前
charint应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
22秒前
追光发布了新的文献求助10
24秒前
Murphy完成签到,获得积分10
25秒前
阿星捌发布了新的文献求助10
26秒前
shi0331完成签到,获得积分10
27秒前
草莓不摇奶昔完成签到,获得积分10
32秒前
36秒前
41秒前
林圆涛发布了新的文献求助10
48秒前
wanci应助ysxxx采纳,获得10
50秒前
yrj完成签到 ,获得积分10
50秒前
燕子完成签到,获得积分10
50秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851942
求助须知:如何正确求助?哪些是违规求助? 6274706
关于积分的说明 15627471
捐赠科研通 4967879
什么是DOI,文献DOI怎么找? 2678818
邀请新用户注册赠送积分活动 1623007
关于科研通互助平台的介绍 1579466