Improving Results by Improving Densities: Density-Corrected Density Functional Theory

密度泛函理论 化学 轨道自由密度泛函理论 计算化学 波函数 混合功能 统计物理学 能量(信号处理) 简单(哲学) 量子力学 分子物理学 物理 哲学 认识论
作者
Eunji Sim,Suhwan Song,Stefan Vuckovic,Kieron Burke
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (15): 6625-6639 被引量:84
标识
DOI:10.1021/jacs.1c11506
摘要

Density functional theory (DFT) calculations have become widespread in both chemistry and materials, because they usually provide useful accuracy at much lower computational cost than wavefunction-based methods. All practical DFT calculations require an approximation to the unknown exchange-correlation energy, which is then used self-consistently in the Kohn-Sham scheme to produce an approximate energy from an approximate density. Density-corrected DFT is simply the study of the relative contributions to the total energy error. In the vast majority of DFT calculations, the error due to the approximate density is negligible. But with certain classes of functionals applied to certain classes of problems, the density error is sufficiently large as to contribute to the energy noticeably, and its removal leads to much better results. These problems include reaction barriers, torsional barriers involving π-conjugation, halogen bonds, radicals and anions, most stretched bonds, etc. In all such cases, use of a more accurate density significantly improves performance, and often the simple expedient of using the Hartree-Fock density is enough. This Perspective explains what DC-DFT is, where it is likely to improve results, and how DC-DFT can produce more accurate functionals. We also outline challenges and prospects for the field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助从容芸采纳,获得20
1秒前
Oops发布了新的文献求助10
1秒前
刘玄德发布了新的文献求助10
1秒前
机智的凡梦完成签到,获得积分10
1秒前
LRR发布了新的文献求助10
1秒前
2秒前
Lin完成签到,获得积分10
2秒前
星星炒蛋完成签到,获得积分10
2秒前
张铭哲发布了新的文献求助10
2秒前
顾矜应助qqz采纳,获得10
3秒前
MY999完成签到,获得积分10
3秒前
嘟嘟嘟嘟嘟完成签到,获得积分10
3秒前
3秒前
竹子发布了新的文献求助20
4秒前
4秒前
4秒前
共享精神应助hopeseason采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
liuchuck驳回了Ava应助
4秒前
嘿ha发布了新的文献求助10
5秒前
Tea233发布了新的文献求助10
5秒前
共享精神应助天气晴朗采纳,获得10
5秒前
6秒前
6秒前
无极微光应助哇哈哈哈采纳,获得20
7秒前
火山啊啊啊完成签到 ,获得积分10
7秒前
慕青应助刘国建郭菱香采纳,获得10
7秒前
tangyong发布了新的文献求助10
7秒前
荒年完成签到,获得积分10
7秒前
Hedy发布了新的文献求助10
7秒前
8秒前
雪白巨人完成签到,获得积分10
8秒前
8秒前
陶醉幻丝发布了新的文献求助10
8秒前
8秒前
CipherSage应助紧张的紫文采纳,获得10
8秒前
8秒前
8秒前
共享精神应助111采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590