Conductive NiCo bimetal-organic framework nanorods with conductivity-enhanced electrochemiluminescence for constructing biosensing platform

电化学发光 双金属 纳米棒 材料科学 双金属片 电导率 兴奋剂 纳米技术 导电体 电阻率和电导率 发光体 金属有机骨架 光电子学 生物传感器 电极 金属 发光 化学 电气工程 复合材料 工程类 物理化学 吸附 有机化学 冶金
作者
Yang Yang,Jialing Zhang,Wenbin Liang,Jinling Zhang,Xiaoli Xu,Yong‐Jiang Zhang,Ruo Yuan,Dong‐Rong Xiao
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:362: 131802-131802 被引量:29
标识
DOI:10.1016/j.snb.2022.131802
摘要

Metal-organic frameworks (MOFs) has recently attracted immense attention in electrochemiluminescence (ECL) field, yet the ECL performance of MOFs is largely limited by their natively poor electric conductivity (generally < 10−8S m−1). To address this drawback, we adopted the doping strategy to synthesize a conductive bimetallic MOF nanorod [NixCo9-x(HHTP)4(H2O)30] (denoted as NiCo-HHTP, HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with excellent electrical conductivity (1.20 × 10−3S m−1), which could accelerate the charge transport and facilitate the electrochemical activation of HHTP luminophore, thereby improving utilization ratio of ECL luminophores to achieve a strong ECL emission. As expected, our experiment showed that the bimetallic NiCo-HHTP was superior to the isostructural monometallic MOF (Ni-HHTP) with nearly 2.82-fold higher electrical conductivity, 2.06-fold higher ECL intensity and 3.39-fold higher ECL efficiency. These results suggested that the electrical conductivity of NiCo-HHTP could be significantly improved by doping with cobalt, and the outstanding electrical conductivity greatly contributed to its excellent ECL performance. Considering the above-mentioned superior ECL properties, the NiCo-HHTP nanorods were utilized to fabricate an ultrasensitive ECL biosensor for microRNA-141 determination, achieving a wide linear range from 1 fM to 10 nM and a low detection limit of 0.69 fM. Overall, our work proposed a hopeful and practicable strategy to improve ECL performance via enhancing electrical conductivity of MOFs, which overcame current limitation of ECL enhancement in nonconductive MOFs and opened a new chapter to prepare high-efficiency MOF-based ECL materials, thus providing a unique opportunity for constructing ultrasensitive ECL sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
驴胶补血颗粒完成签到 ,获得积分10
1秒前
酷波er应助XinyiZhang采纳,获得10
1秒前
赘婿应助踏实雪一采纳,获得10
1秒前
天地不语完成签到,获得积分10
2秒前
小杨杨发布了新的文献求助10
2秒前
lx发布了新的文献求助10
4秒前
4秒前
尊敬的惠发布了新的文献求助10
4秒前
科研通AI2S应助机灵的中心采纳,获得10
5秒前
5秒前
6秒前
无名氏应助拉塞尔....采纳,获得10
6秒前
Lee完成签到,获得积分10
6秒前
斯文败类应助噜啦啦采纳,获得10
6秒前
柯柯完成签到 ,获得积分10
7秒前
西瘡完成签到,获得积分10
7秒前
SciGPT应助小猴采纳,获得10
8秒前
我是老大应助mt采纳,获得10
9秒前
Simon发布了新的文献求助10
11秒前
qqqqqqy应助健壮的惠采纳,获得10
11秒前
tony发布了新的文献求助10
11秒前
小馒头完成签到,获得积分10
12秒前
12秒前
14秒前
14秒前
打打应助heli采纳,获得10
16秒前
16秒前
17秒前
DoLaso完成签到,获得积分10
17秒前
噜啦啦发布了新的文献求助10
18秒前
缺粥发布了新的文献求助10
20秒前
小王子完成签到,获得积分10
20秒前
20秒前
包容的剑发布了新的文献求助10
20秒前
21秒前
Ruuo616完成签到 ,获得积分10
21秒前
传奇3应助lvxuan采纳,获得10
21秒前
杨桃发布了新的文献求助10
21秒前
tony完成签到,获得积分20
22秒前
FashionBoy应助无心的土豆采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551943
求助须知:如何正确求助?哪些是违规求助? 3128370
关于积分的说明 9377451
捐赠科研通 2827382
什么是DOI,文献DOI怎么找? 1554345
邀请新用户注册赠送积分活动 725429
科研通“疑难数据库(出版商)”最低求助积分说明 714842