亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Transfer Learning Approach in Remaining Useful Life Prediction for Incomplete Dataset

计算机科学 正规化(语言学) 学习迁移 一致性(知识库) 域适应 数据挖掘 领域(数学分析) 人工智能 机器学习 知识转移 数据建模 缺少数据 数学 数学分析 分类器(UML) 数据库 知识管理
作者
Shahin Siahpour,Xiang Li,Jay Lee
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:75
标识
DOI:10.1109/tim.2022.3162283
摘要

Due to the successful implementation of intelligent data-driven approaches, these methods are gaining remarkable attention in predicting the remaining useful life (RUL) problems. Within this scope, transfer learning approaches are exploited to transfer the obtained knowledge from the source domain data to the target domain data. Due to the different working regimes and operating conditions, there exists a discrepancy between the data distribution of source and target domain datasets. Domain adaptation techniques are deployed to tackle the data distribution discrepancy. In most prognostic problems, it is assumed that the complete life-cycle run-to-failure information for the target domain dataset is available. However, in real-practical scenarios, providing complete life-cycle data is not straightforward. To solve this issue, this article proposed a transfer learning approach for RUL prediction using a consistency-based regularization. In the proposed deep learning framework, a consistency-based regularization term is added to the objective function to remove the negative effect of missing information in the incomplete target domain dataset. In order to further validate the effectiveness of the proposed method, a comprehensive experimental analysis has been done on two different aerospace and bearing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助七月采纳,获得10
3秒前
kky完成签到 ,获得积分10
7秒前
奈思完成签到 ,获得积分10
8秒前
9秒前
23秒前
39秒前
在水一方应助科研通管家采纳,获得10
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Jasper应助CC采纳,获得10
2分钟前
Zhaoyli发布了新的文献求助10
2分钟前
2分钟前
萝卜猪完成签到,获得积分10
2分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
会会完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
yys10l完成签到,获得积分10
4分钟前
yys完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
QCB完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
NexusExplorer应助契合采纳,获得10
5分钟前
6分钟前
契合发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413316
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122927
捐赠科研通 4445494
什么是DOI,文献DOI怎么找? 2439208
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408756