A Novel Transfer Learning Approach in Remaining Useful Life Prediction for Incomplete Dataset

计算机科学 正规化(语言学) 学习迁移 一致性(知识库) 域适应 数据挖掘 领域(数学分析) 人工智能 机器学习 知识转移 数据建模 缺少数据 数学 数学分析 分类器(UML) 数据库 知识管理
作者
Shahin Siahpour,Xiang Li,Jay Lee
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:75
标识
DOI:10.1109/tim.2022.3162283
摘要

Due to the successful implementation of intelligent data-driven approaches, these methods are gaining remarkable attention in predicting the remaining useful life (RUL) problems. Within this scope, transfer learning approaches are exploited to transfer the obtained knowledge from the source domain data to the target domain data. Due to the different working regimes and operating conditions, there exists a discrepancy between the data distribution of source and target domain datasets. Domain adaptation techniques are deployed to tackle the data distribution discrepancy. In most prognostic problems, it is assumed that the complete life-cycle run-to-failure information for the target domain dataset is available. However, in real-practical scenarios, providing complete life-cycle data is not straightforward. To solve this issue, this article proposed a transfer learning approach for RUL prediction using a consistency-based regularization. In the proposed deep learning framework, a consistency-based regularization term is added to the objective function to remove the negative effect of missing information in the incomplete target domain dataset. In order to further validate the effectiveness of the proposed method, a comprehensive experimental analysis has been done on two different aerospace and bearing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助白昼采纳,获得10
刚刚
1秒前
量子星尘发布了新的文献求助10
2秒前
zmj完成签到,获得积分10
4秒前
5秒前
搞怪斑马发布了新的文献求助10
5秒前
zhangmin发布了新的文献求助10
5秒前
万老头发布了新的文献求助10
6秒前
自觉小凡发布了新的文献求助20
6秒前
7秒前
kk完成签到,获得积分10
7秒前
ranjeah完成签到 ,获得积分10
7秒前
8秒前
得之我幸完成签到,获得积分10
9秒前
10秒前
激情的自行车完成签到,获得积分10
11秒前
11秒前
白蓝红完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
JamesPei应助科研小白采纳,获得10
13秒前
深情安青应助runtang采纳,获得30
13秒前
songcy7完成签到,获得积分10
13秒前
烟花应助六芒星采纳,获得10
14秒前
andy_lee发布了新的文献求助10
14秒前
15秒前
司徒水绿完成签到 ,获得积分10
15秒前
嘻嘻嘻发布了新的文献求助10
15秒前
削皮柚子发布了新的文献求助10
16秒前
俭朴蜜蜂发布了新的文献求助200
17秒前
依夏祭完成签到,获得积分10
18秒前
cc完成签到 ,获得积分10
18秒前
18秒前
天天快乐应助粤十一采纳,获得10
19秒前
YiJin_Wang发布了新的文献求助10
20秒前
乐情发布了新的文献求助20
20秒前
23秒前
wxs发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206