Bearing fault diagnosis method based on multi-source heterogeneous information fusion

计算机科学 断层(地质) 模式识别(心理学) 冗余(工程) 方位(导航) 多源 残余物 人工智能 融合 数据挖掘 算法 数学 地质学 哲学 操作系统 统计 地震学 语言学
作者
Ke Zhang,Tianhao Gao,Huaitao Shi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:33 (7): 075901-075901 被引量:19
标识
DOI:10.1088/1361-6501/ac5deb
摘要

Abstract Bearing fault diagnosis is a critical component of the mechanical equipment monitoring system. In the complex and harsh environment in which bearings operate, the fault diagnosis approach of multi-source information fusion can extract fault features more stably and extensively than the traditional single-source fault diagnosis method. However, most existing multi-source fusion methods are in infancy, and there are a number of pressing issues to address, such as subjective elements having a significant impact, excessive data redundancy, fuzzy multi-source signal fusion strategy, and insufficient accuracy. As a result, a new multi-source fusion fault diagnosis method is proposed in this paper. First, the residual pyramid algorithm is utilized to fuse the acoustic and vibration signals of multiple spatial positions respectively and then form two fused acoustic and vibration signals. Second, two improved 2D-CNN are used to extract the fault features contained in the above two signals separately to form a multi-source fault feature set. Third, an AdaBoost algorithm with a dynamic deletion mechanism is designed to fuse multi-source fault feature sets and produce the fault diagnosis findings. Finally, six different experimental data sets are used to test the performance of the model. The results reveal that the model has better generalization, higher and more stable fault diagnostic accuracy, and stronger anti-interference capacity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhh完成签到,获得积分10
刚刚
柠檬发布了新的文献求助10
1秒前
lcylc发布了新的文献求助10
2秒前
科研虫发布了新的文献求助30
2秒前
淳于汲发布了新的文献求助10
3秒前
完美世界应助jzd1991采纳,获得10
4秒前
4秒前
4秒前
Wenhao Zhao完成签到,获得积分10
4秒前
shijiu完成签到,获得积分20
5秒前
勤奋草莓完成签到,获得积分10
5秒前
wuhen完成签到,获得积分10
6秒前
7秒前
雷帝3关注了科研通微信公众号
7秒前
承蒙时光不7完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
WANGCHU发布了新的文献求助10
8秒前
fino发布了新的文献求助10
8秒前
8秒前
8秒前
Doreen完成签到,获得积分10
9秒前
冷艳的语雪完成签到 ,获得积分10
9秒前
星辰大海应助传统的钧采纳,获得10
9秒前
9秒前
9秒前
九旁十五便士完成签到,获得积分10
10秒前
一路硕博应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
11秒前
一路硕博应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
12秒前
LDY发布了新的文献求助10
12秒前
升升升呀应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
12秒前
Hello应助科研通管家采纳,获得10
12秒前
陈木子完成签到,获得积分10
12秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3083043
求助须知:如何正确求助?哪些是违规求助? 2736283
关于积分的说明 7540658
捐赠科研通 2385697
什么是DOI,文献DOI怎么找? 1265066
科研通“疑难数据库(出版商)”最低求助积分说明 612909
版权声明 597702