Statistical Methods for Microbiome Compositional Data Network Inference: A Survey

推论 计算机科学 微生物群 数据科学 统计推断 生物网络 因果推理 机器学习 人工智能 数据挖掘 计算生物学 生物 生物信息学 数学 计量经济学 统计
作者
Liang Chen,Hui Wan,Qiuyan He,Shun He,Minghua Deng
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:29 (7): 704-723 被引量:6
标识
DOI:10.1089/cmb.2021.0406
摘要

Microbes can be found almost everywhere in the world. They are not isolated, but rather interact with each other and establish connections with their living environments. Studying these interactions is essential to an understanding of the organization and complex interplay of microbial communities, as well as the structure and dynamics of various ecosystems. A widely used approach toward this objective involves the inference of microbiome interaction networks. However, owing to the compositional, high-dimensional, sparse, and heterogeneous nature of observed microbial data, applying network inference methods to estimate their associations is challenging. In addition, external environmental interference and biological concerns also make it more difficult to deal with the network inference. In this article, we provide a comprehensive review of emerging microbiome interaction network inference methods. According to various research targets, estimated networks are divided into four main categories: correlation networks, conditional correlation networks, mixture networks, and differential networks. Their assumptions, high-level ideas, advantages, as well as limitations, are presented in this review. Since real microbial interactions can be complex and dynamic, no unifying method has, to date, captured all the aspects of interest. In addition, we discuss the challenges now confronting current microbial interaction study and future prospects. Finally, we point out several feasible directions of microbial network inference analysis and highlight that future research requires the joint promotion of statistical computation methods and experimental techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助玛丽洁采纳,获得10
刚刚
iNk应助老北京采纳,获得10
1秒前
初雪完成签到,获得积分10
1秒前
NexusExplorer应助秋辞采纳,获得10
1秒前
peace发布了新的文献求助10
1秒前
ChrisZhou发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
隐形曼青应助蟹老板采纳,获得10
3秒前
3秒前
bobo完成签到,获得积分10
4秒前
scy完成签到,获得积分20
4秒前
4秒前
舒心的雨双完成签到,获得积分20
5秒前
HelloKun完成签到,获得积分10
6秒前
6秒前
湘君发布了新的文献求助10
7秒前
7秒前
z_zq完成签到,获得积分10
7秒前
scy发布了新的文献求助10
7秒前
可乐加冰完成签到,获得积分10
7秒前
幽默白开水完成签到,获得积分20
8秒前
9秒前
9秒前
顾矜应助木子李采纳,获得10
9秒前
领导范儿应助成1采纳,获得10
9秒前
大个应助舒心的雨双采纳,获得10
9秒前
10秒前
Orange应助Sammybiu采纳,获得10
10秒前
cctv18应助ssj采纳,获得10
11秒前
苏苏完成签到 ,获得积分10
11秒前
舒心一兰发布了新的文献求助10
12秒前
13秒前
13秒前
陶醉谷秋完成签到,获得积分10
13秒前
空桶出蝶完成签到,获得积分10
13秒前
13秒前
JamesPei应助幽默白开水采纳,获得10
14秒前
情怀应助JQB采纳,获得10
14秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Photosynthesis III 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071500
求助须知:如何正确求助?哪些是违规求助? 2725527
关于积分的说明 7489890
捐赠科研通 2372698
什么是DOI,文献DOI怎么找? 1258220
科研通“疑难数据库(出版商)”最低求助积分说明 610233
版权声明 596916