Statistical Methods for Microbiome Compositional Data Network Inference: A Survey

推论 计算机科学 微生物群 数据科学 统计推断 生物网络 因果推理 机器学习 人工智能 数据挖掘 计算生物学 生物 生物信息学 数学 计量经济学 统计
作者
Liang Chen,Hui Wan,Qiuyan He,Shun He,Minghua Deng
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:29 (7): 704-723 被引量:6
标识
DOI:10.1089/cmb.2021.0406
摘要

Microbes can be found almost everywhere in the world. They are not isolated, but rather interact with each other and establish connections with their living environments. Studying these interactions is essential to an understanding of the organization and complex interplay of microbial communities, as well as the structure and dynamics of various ecosystems. A widely used approach toward this objective involves the inference of microbiome interaction networks. However, owing to the compositional, high-dimensional, sparse, and heterogeneous nature of observed microbial data, applying network inference methods to estimate their associations is challenging. In addition, external environmental interference and biological concerns also make it more difficult to deal with the network inference. In this article, we provide a comprehensive review of emerging microbiome interaction network inference methods. According to various research targets, estimated networks are divided into four main categories: correlation networks, conditional correlation networks, mixture networks, and differential networks. Their assumptions, high-level ideas, advantages, as well as limitations, are presented in this review. Since real microbial interactions can be complex and dynamic, no unifying method has, to date, captured all the aspects of interest. In addition, we discuss the challenges now confronting current microbial interaction study and future prospects. Finally, we point out several feasible directions of microbial network inference analysis and highlight that future research requires the joint promotion of statistical computation methods and experimental techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
srandrs完成签到,获得积分20
刚刚
氢和氧发布了新的文献求助10
刚刚
大大的寄吧完成签到,获得积分10
1秒前
青mu发布了新的文献求助10
1秒前
2秒前
2秒前
炫炫炫发布了新的文献求助30
2秒前
赵唯皓发布了新的文献求助10
3秒前
YangMengting完成签到 ,获得积分10
3秒前
坦率耳机应助努力的学采纳,获得20
3秒前
srandrs发布了新的文献求助10
4秒前
4秒前
欢乐的辞南完成签到 ,获得积分10
4秒前
烟花应助xwl采纳,获得10
5秒前
stella发布了新的文献求助20
5秒前
大模型应助咕噜采纳,获得10
6秒前
爱搬玉米发布了新的文献求助10
6秒前
lkwat完成签到,获得积分10
6秒前
阔达的依秋完成签到,获得积分10
7秒前
7秒前
晚湖完成签到,获得积分10
7秒前
7秒前
暮寻屿苗完成签到 ,获得积分10
7秒前
盏茶轻抿完成签到,获得积分10
7秒前
躺赢局局长完成签到 ,获得积分10
8秒前
suicone完成签到,获得积分10
8秒前
luckyyy完成签到 ,获得积分10
8秒前
8秒前
花藏影完成签到,获得积分10
9秒前
瑞今天博学了吗完成签到,获得积分10
9秒前
9秒前
ke发布了新的文献求助10
9秒前
lixin完成签到,获得积分10
10秒前
10秒前
WRZ完成签到 ,获得积分10
10秒前
10秒前
诚心宛秋完成签到,获得积分20
11秒前
chxhwu发布了新的文献求助10
11秒前
三木完成签到 ,获得积分10
11秒前
兜兜完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392