亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Statistical Methods for Microbiome Compositional Data Network Inference: A Survey

推论 计算机科学 微生物群 数据科学 统计推断 生物网络 因果推理 机器学习 人工智能 数据挖掘 计算生物学 生物 生物信息学 数学 计量经济学 统计
作者
Liang Chen,Hui Wan,Qiuyan He,Shun He,Minghua Deng
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
卷期号:29 (7): 704-723 被引量:6
标识
DOI:10.1089/cmb.2021.0406
摘要

Microbes can be found almost everywhere in the world. They are not isolated, but rather interact with each other and establish connections with their living environments. Studying these interactions is essential to an understanding of the organization and complex interplay of microbial communities, as well as the structure and dynamics of various ecosystems. A widely used approach toward this objective involves the inference of microbiome interaction networks. However, owing to the compositional, high-dimensional, sparse, and heterogeneous nature of observed microbial data, applying network inference methods to estimate their associations is challenging. In addition, external environmental interference and biological concerns also make it more difficult to deal with the network inference. In this article, we provide a comprehensive review of emerging microbiome interaction network inference methods. According to various research targets, estimated networks are divided into four main categories: correlation networks, conditional correlation networks, mixture networks, and differential networks. Their assumptions, high-level ideas, advantages, as well as limitations, are presented in this review. Since real microbial interactions can be complex and dynamic, no unifying method has, to date, captured all the aspects of interest. In addition, we discuss the challenges now confronting current microbial interaction study and future prospects. Finally, we point out several feasible directions of microbial network inference analysis and highlight that future research requires the joint promotion of statistical computation methods and experimental techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
研友_nVWP2Z完成签到 ,获得积分10
14秒前
17秒前
yeye关注了科研通微信公众号
18秒前
寻风发布了新的文献求助10
21秒前
华仔应助科研通管家采纳,获得30
32秒前
领导范儿应助科研通管家采纳,获得10
32秒前
IvanMcRae应助科研通管家采纳,获得10
32秒前
所所应助科研通管家采纳,获得10
32秒前
爱静静应助科研通管家采纳,获得20
32秒前
34秒前
35秒前
苏苏发布了新的文献求助30
39秒前
zyf完成签到,获得积分10
39秒前
yeye发布了新的文献求助10
40秒前
monair完成签到 ,获得积分10
1分钟前
mxcy完成签到 ,获得积分10
1分钟前
隐形曼青应助寻风采纳,获得10
1分钟前
nssm发布了新的文献求助10
1分钟前
yiqi完成签到 ,获得积分10
1分钟前
千纸鹤完成签到 ,获得积分10
2分钟前
Iron_five完成签到 ,获得积分10
2分钟前
苏瑾深完成签到,获得积分10
2分钟前
nssm发布了新的文献求助10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
希望天下0贩的0应助nssm采纳,获得10
2分钟前
苏瑾深发布了新的文献求助10
2分钟前
友好刺猬发布了新的文献求助10
2分钟前
hehehehe发布了新的文献求助10
3分钟前
3分钟前
3分钟前
SS完成签到,获得积分0
3分钟前
hehehehe完成签到,获得积分10
4分钟前
4分钟前
孔雪发布了新的文献求助10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
无花果应助孔雪采纳,获得10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968408
求助须知:如何正确求助?哪些是违规求助? 3513255
关于积分的说明 11167012
捐赠科研通 3248604
什么是DOI,文献DOI怎么找? 1794268
邀请新用户注册赠送积分活动 874990
科研通“疑难数据库(出版商)”最低求助积分说明 804629