Statistical Methods for Microbiome Compositional Data Network Inference: A Survey

推论 计算机科学 微生物群 数据科学 统计推断 生物网络 因果推理 机器学习 人工智能 数据挖掘 计算生物学 生物 生物信息学 数学 计量经济学 统计
作者
Liang Chen,Hui Wan,Qiuyan He,Shun He,Minghua Deng
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:29 (7): 704-723 被引量:6
标识
DOI:10.1089/cmb.2021.0406
摘要

Microbes can be found almost everywhere in the world. They are not isolated, but rather interact with each other and establish connections with their living environments. Studying these interactions is essential to an understanding of the organization and complex interplay of microbial communities, as well as the structure and dynamics of various ecosystems. A widely used approach toward this objective involves the inference of microbiome interaction networks. However, owing to the compositional, high-dimensional, sparse, and heterogeneous nature of observed microbial data, applying network inference methods to estimate their associations is challenging. In addition, external environmental interference and biological concerns also make it more difficult to deal with the network inference. In this article, we provide a comprehensive review of emerging microbiome interaction network inference methods. According to various research targets, estimated networks are divided into four main categories: correlation networks, conditional correlation networks, mixture networks, and differential networks. Their assumptions, high-level ideas, advantages, as well as limitations, are presented in this review. Since real microbial interactions can be complex and dynamic, no unifying method has, to date, captured all the aspects of interest. In addition, we discuss the challenges now confronting current microbial interaction study and future prospects. Finally, we point out several feasible directions of microbial network inference analysis and highlight that future research requires the joint promotion of statistical computation methods and experimental techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红红完成签到,获得积分10
1秒前
瑶一瑶发布了新的文献求助10
1秒前
NexusExplorer应助刘鹏宇采纳,获得10
1秒前
roselau完成签到,获得积分10
1秒前
yudandan@CJLU完成签到,获得积分10
2秒前
2秒前
半山完成签到,获得积分10
6秒前
吹泡泡的红豆完成签到 ,获得积分10
7秒前
研友_89eBO8完成签到 ,获得积分10
7秒前
隐形曼青应助ZeJ采纳,获得10
7秒前
7秒前
隐形曼青应助温暖的钻石采纳,获得10
8秒前
Khr1stINK发布了新的文献求助10
9秒前
123cxj发布了新的文献求助10
10秒前
星辰大海应助红红采纳,获得10
10秒前
sweetbearm应助小周采纳,获得10
11秒前
科研通AI5应助赖道之采纳,获得10
11秒前
12秒前
HonamC完成签到,获得积分10
13秒前
十三十四十五完成签到,获得积分10
14秒前
潇洒的问夏完成签到 ,获得积分10
16秒前
无声瀑布完成签到,获得积分10
16秒前
Bingtao_Lian完成签到 ,获得积分10
17秒前
小布丁完成签到 ,获得积分10
17秒前
竹筏过海应助季生采纳,获得30
18秒前
19秒前
buno应助22采纳,获得10
20秒前
赘婿应助TT采纳,获得10
21秒前
21秒前
21秒前
22秒前
Jenny应助赖道之采纳,获得10
24秒前
依古比古完成签到 ,获得积分10
26秒前
汎影发布了新的文献求助10
26秒前
小二完成签到,获得积分10
26秒前
27秒前
29秒前
顾矜应助长情洙采纳,获得10
29秒前
monere发布了新的文献求助30
29秒前
Xiaoxiao应助汉关采纳,获得10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808