生物生产
光遗传学
电化学梯度
商品化学品
代谢工程
质子泵
细胞生物学
化学
生物化学
生物物理学
生物
酶
ATP酶
膜
催化作用
神经科学
作者
Yoshihiro Toya,Yoko Hirono-Hara,Hidenobu Hirayama,Kentaro Kamata,Ryō Tanaka,Mikoto Sano,Sayaka Kitamura,Kensuke Otsuka,Rei Abe‐Yoshizumi,Satoshi P. Tsunoda,Hiroshi Kikukawa,Hideki Kandori,Hiroshi Shimizu,Fumio Matsuda,Jun Ishii,Kiyotaka Y. Hara
标识
DOI:10.1016/j.ymben.2022.03.012
摘要
In microbial fermentative production, ATP regeneration, while crucial for cellular processes, conflicts with efficient target chemical production because ATP regeneration exhausts essential carbon sources also required for target chemical biosynthesis. To wrestle with this dilemma, we harnessed the power of microbial rhodopsins with light-driven proton pumping activity to supplement with ATP, thereby facilitating the bioproduction of various chemicals. We first demonstrated a photo-driven ATP supply and redistribution of metabolic carbon flows to target chemical synthesis by installing already-known delta rhodopsin (dR) in Escherichia coli. In addition, we identified novel rhodopsins with higher proton pumping activities than dR, and created an engineered cell for in vivo self-supply of the rhodopsin-activator, all-trans-retinal. Our concept exploiting the light-powering ATP supplier offers a potential increase in carbon use efficiency for microbial productions through metabolic reprogramming.
科研通智能强力驱动
Strongly Powered by AbleSci AI