亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A 53.6-to-60.2GHz Many-Core Fundamental Oscillator With Scalable Mesh Topology Achieving -136.0dBc/Hz Phase Noise at 10MHz Offset and 190.3dBc/Hz Peak FoM in 65nm CMOS

相位噪声 拓扑(电路) 电气工程 电子工程 电感器 CMOS芯片 本振子 振荡器相位噪声 物理 计算机科学 噪声系数 工程类 电压 放大器
作者
Haikun Jia,Ruichang Ma,Wei Deng,Zhihua Wang,Baoyong Chi
标识
DOI:10.1109/isscc42614.2022.9731581
摘要

The millimeter-wave (mm-wave) high-speed wireless communication has placed stringent requirements on the phase-noise performance of the local oscillators (LO), especially when a high-order modulation such as 1024-QAM is used. To meet the phase noise requirement, one can use a subharmonic oscillator followed by frequency multipliers to improve the phase noise performance [1]. However, the frequency multipliers and the necessary extra amplification stages consume a large chip area and power. On the other hand, mm-wave fundamental VCOs suffer from the Q drop as inductance becomes too small due to the inner-edge deconstructive coupling in single-turn inductors [2]. To overcome this problem, multicore technologies are used in mm-wave fundamental oscillators [2 – 6]. By coupling N cores together, the phase noise can be improved by 10log(N). At the same time, the inductance in each core can be large for the given phase-noise requirement, thus alleviating the small-inductor problem. The key to a multicore oscillator design is to effectively synchronize each oscillator core. The left top of Fig. 9.3.1 shows the schematic of the resistance-coupled multicore oscillator [3 – 5], where resistors are placed between the corresponding output nodes of each core. The resistance-coupling scheme is good for a small number of cores, such as 2 cores or 4 cores, where the output node of each core can be physically close to each other. In a many-core extension, as shown in the left-middle of Fig. 9.3.1, some of the coupling resistors stretch over a long distance, which increases their parasitic capacitance and contributes to tank mismatch. It also suffers from the trade-off between the lock range and parasitic capacitance. The right top of Fig. 9.3.1 shows the schematic of the proposed transformer-based mode-rejection-coupled multicore oscillator. In this scheme, the oscillator active core shares the transformer tank with its two adjacent cores, and isolation resistors are placed in the middle of gate coils. The resistor damps the Q of the transformer in the common mode, forcing the voltage signals at the two sides of the transformer to be differential, therefore synchronizing the oscillator cores. The transformer-based mode-rejection-coupled scheme has several advantages over the resistance-coupled scheme. First, the isolation resistors are transparent in the differential mode, therefore providing robust coupling without the parasitic capacitance penalty. Second, because the two sides of transformers are connected to two different active cores, they do not have to be physically close to each other, thus enabling the slab type inductors, which can achieve simultaneous small inductance and high Q as in [2]. Third, since the resistors are only placed at local-gate central taps, the transformer-based mode-rejection-coupled scheme is suitable for the many-core extension. Similar mode-rejection-coupled ideas have been used in [2, 6]. Single inductors, instead of transformers, are used in [2], which only applies to CMOS configuration due to the power-supply issue. Triple-coupled-transformers are used in [6], where the source coil is much shorter than the coils at gate and drain terminals, making it difficult to extend to more than 4 cores. In this work, a transformer-based mode-rejection-coupled many-core fundamental oscillator is proposed. A 16-core oscillator is prototyped in a 65nm CMOS process and achieves -136.0dBc/Hz phase noise at a 10MHz offset, 190.3dBc/Hz peak FoM at 10MHz, and a 53.6-to-60.2GHz frequency-tuning range.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助小飞采纳,获得10
1秒前
阿瓜师傅完成签到 ,获得积分10
2秒前
bkagyin应助一丁雨采纳,获得10
5秒前
赵振辉完成签到,获得积分10
5秒前
8秒前
传奇3应助小飞采纳,获得10
11秒前
11秒前
13秒前
13秒前
可爱的函函应助huhu采纳,获得10
15秒前
041976发布了新的文献求助10
18秒前
18秒前
19秒前
楚楚发布了新的文献求助10
20秒前
25秒前
一丁雨完成签到,获得积分10
26秒前
26秒前
26秒前
小飞发布了新的文献求助10
27秒前
27秒前
27秒前
27秒前
28秒前
29秒前
29秒前
激昂的小凡完成签到,获得积分20
32秒前
小飞发布了新的文献求助10
32秒前
小飞发布了新的文献求助10
32秒前
小飞发布了新的文献求助10
32秒前
小飞发布了新的文献求助10
32秒前
小飞发布了新的文献求助10
32秒前
小飞发布了新的文献求助10
32秒前
小飞发布了新的文献求助10
32秒前
一丁雨发布了新的文献求助10
33秒前
思源应助科研通管家采纳,获得30
33秒前
Criminology34应助科研通管家采纳,获得10
33秒前
33秒前
852应助科研通管家采纳,获得10
33秒前
Criminology34应助科研通管家采纳,获得10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650648
求助须知:如何正确求助?哪些是违规求助? 4781203
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572337
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332