A 53.6-to-60.2GHz Many-Core Fundamental Oscillator With Scalable Mesh Topology Achieving -136.0dBc/Hz Phase Noise at 10MHz Offset and 190.3dBc/Hz Peak FoM in 65nm CMOS

相位噪声 拓扑(电路) 电气工程 电子工程 电感器 CMOS芯片 本振子 振荡器相位噪声 物理 计算机科学 噪声系数 工程类 电压 放大器
作者
Haikun Jia,Ruichang Ma,Wei Deng,Zhihua Wang,Baoyong Chi
标识
DOI:10.1109/isscc42614.2022.9731581
摘要

The millimeter-wave (mm-wave) high-speed wireless communication has placed stringent requirements on the phase-noise performance of the local oscillators (LO), especially when a high-order modulation such as 1024-QAM is used. To meet the phase noise requirement, one can use a subharmonic oscillator followed by frequency multipliers to improve the phase noise performance [1]. However, the frequency multipliers and the necessary extra amplification stages consume a large chip area and power. On the other hand, mm-wave fundamental VCOs suffer from the Q drop as inductance becomes too small due to the inner-edge deconstructive coupling in single-turn inductors [2]. To overcome this problem, multicore technologies are used in mm-wave fundamental oscillators [2 – 6]. By coupling N cores together, the phase noise can be improved by 10log(N). At the same time, the inductance in each core can be large for the given phase-noise requirement, thus alleviating the small-inductor problem. The key to a multicore oscillator design is to effectively synchronize each oscillator core. The left top of Fig. 9.3.1 shows the schematic of the resistance-coupled multicore oscillator [3 – 5], where resistors are placed between the corresponding output nodes of each core. The resistance-coupling scheme is good for a small number of cores, such as 2 cores or 4 cores, where the output node of each core can be physically close to each other. In a many-core extension, as shown in the left-middle of Fig. 9.3.1, some of the coupling resistors stretch over a long distance, which increases their parasitic capacitance and contributes to tank mismatch. It also suffers from the trade-off between the lock range and parasitic capacitance. The right top of Fig. 9.3.1 shows the schematic of the proposed transformer-based mode-rejection-coupled multicore oscillator. In this scheme, the oscillator active core shares the transformer tank with its two adjacent cores, and isolation resistors are placed in the middle of gate coils. The resistor damps the Q of the transformer in the common mode, forcing the voltage signals at the two sides of the transformer to be differential, therefore synchronizing the oscillator cores. The transformer-based mode-rejection-coupled scheme has several advantages over the resistance-coupled scheme. First, the isolation resistors are transparent in the differential mode, therefore providing robust coupling without the parasitic capacitance penalty. Second, because the two sides of transformers are connected to two different active cores, they do not have to be physically close to each other, thus enabling the slab type inductors, which can achieve simultaneous small inductance and high Q as in [2]. Third, since the resistors are only placed at local-gate central taps, the transformer-based mode-rejection-coupled scheme is suitable for the many-core extension. Similar mode-rejection-coupled ideas have been used in [2, 6]. Single inductors, instead of transformers, are used in [2], which only applies to CMOS configuration due to the power-supply issue. Triple-coupled-transformers are used in [6], where the source coil is much shorter than the coils at gate and drain terminals, making it difficult to extend to more than 4 cores. In this work, a transformer-based mode-rejection-coupled many-core fundamental oscillator is proposed. A 16-core oscillator is prototyped in a 65nm CMOS process and achieves -136.0dBc/Hz phase noise at a 10MHz offset, 190.3dBc/Hz peak FoM at 10MHz, and a 53.6-to-60.2GHz frequency-tuning range.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王同学完成签到,获得积分10
1秒前
Ma发布了新的文献求助10
2秒前
2秒前
丘比特应助勤奋怀蕊采纳,获得10
3秒前
4秒前
认真龙猫完成签到,获得积分20
4秒前
研友_nxV4m8完成签到,获得积分10
5秒前
5秒前
7秒前
511发布了新的文献求助10
7秒前
科研通AI2S应助苏甜采纳,获得10
7秒前
Chen发布了新的文献求助30
9秒前
9秒前
10秒前
傻傻的飞珍完成签到,获得积分10
11秒前
领导范儿应助俏皮的白柏采纳,获得10
11秒前
Alan发布了新的文献求助10
11秒前
悦耳孤萍完成签到,获得积分10
13秒前
511完成签到,获得积分10
14秒前
zmd发布了新的文献求助10
14秒前
hyx发布了新的文献求助10
14秒前
巫马白亦发布了新的文献求助10
17秒前
xia完成签到,获得积分10
17秒前
17秒前
情怀应助lee采纳,获得30
19秒前
执执完成签到,获得积分10
19秒前
江姜发布了新的文献求助10
20秒前
21秒前
21秒前
扶苏发布了新的文献求助10
21秒前
雨下大了发布了新的文献求助10
21秒前
高挑的涛发布了新的文献求助10
21秒前
无私的芹应助Qwe采纳,获得10
25秒前
26秒前
勤奋怀蕊发布了新的文献求助10
26秒前
26秒前
瘦瘦的斑马完成签到,获得积分20
27秒前
29秒前
小彬完成签到 ,获得积分10
30秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952669
求助须知:如何正确求助?哪些是违规求助? 3498162
关于积分的说明 11090517
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349