With the increasing improvement of wearable gadgets, nanogenerators have received significant attention in recent years. Herein, a hybrid piezoelectric and triboelectric nanogenerators (PTNG) for generating energy and monitoring is developed. The PTNG uses magnetic force to implement the opposing force in the sliding mode between the Kapton and copper/aluminum layers for the triboelectric part and polyvinylidene fluoride strips. The triboelectric part with copper set up in PTNG in mode 2 (capsule with electrode layer) is found with the maximum voltage in the open circuit and the peak power of approximately 12 μW for the triboelectric part. The piezoelectric part in PTNG is found with the maximum voltage in the open circuit and the peak power of approximately 70 μW. In this design, a self‐powered walking sensing system is developed utilizing the PTNG for analyzing behavior of the human by walking on the treadmill. A test is conducted with different speeds of the treadmill, and the maximum hybrid open‐circuit voltage at 8 km h −1 is 21.9 V. This approach may present an innovative purpose for creating high‐performance and manageable energy harvesting gadgets with improved power output from human motions.