Bilevel learning for large-scale flexible flow shop scheduling

启发式 调度(生产过程) 计算机科学 流水车间调度 双层优化 数学优化 人工智能 作业车间调度 数学 算法 操作系统 地铁列车时刻表 最优化问题
作者
Longkang Li,Xiaojin Fu,Hui‐Ling Zhen,Mingxuan Yuan,Jun Wang,Jiawen Lu,Xialiang Tong,Jia Zeng,Dirk Schnieders
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:168: 108140-108140 被引量:16
标识
DOI:10.1016/j.cie.2022.108140
摘要

• Effective and efficient scheduling method for large scale industrial problems. • Bilevel constraint Markov Decision Process to model the scheduling. • A theoretical guarantee of convergence to Stackelberg equilibrium. • Bilevel deep reinforcement learning framework to learn the problem. • Demonstrating the benefits of our method on benchmarks and industrial data. Many industrial practitioners are facing the challenge of solving large-scale scheduling problems within a limited time. In this paper, we propose a novel bilevel scheduler based on constraint Markov Decision Process to solve large-scale flexible flow shop scheduling problems (FFSP). There are many intelligent algorithms proposed to solve FFSP, but they take quite long time to execute or are even not working for large-scale problems. Our scheduler is able to decide the sequence of a large number of jobs in a limited time with the objective to minimize makespans. The upper level is designed to explore an initial global sequence, whereas the lower level aims to look for partial sequence refinements. In the implementation, Double Deep Q Network (DDQN) is used in the upper level and Graph Pointer Network (GPN) lies within the lower level. The two levels are connected by a sliding-window sampling mechanism. Based on datasets from public benchmarks and real-world industrial scenarios with over 5000 jobs, experiments show that our bilevel scheduler significantly outperforms seven baseline algorithms, including three state-of-the-art heuristics, three deep learning based algorithms, and another bilevel model, in terms of makespans and computational time. In particular, it only takes less than 200 s to get solutions of large-scale problems with up to 5000 jobs and matches the performance of the state-of-the-art heuristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助吕凯迪采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
迟迟发布了新的文献求助10
1秒前
HamzaAnsari完成签到,获得积分10
2秒前
2秒前
自觉远山完成签到,获得积分10
2秒前
zhou发布了新的文献求助10
3秒前
3秒前
location发布了新的文献求助10
3秒前
Sindy发布了新的文献求助30
3秒前
3秒前
慈祥的丹寒完成签到 ,获得积分10
4秒前
重要无招发布了新的文献求助10
4秒前
碧蓝碧凡发布了新的文献求助10
4秒前
5秒前
杨莹完成签到,获得积分10
5秒前
5秒前
吕凯迪完成签到,获得积分10
5秒前
12发布了新的文献求助50
6秒前
cc应助sanwan采纳,获得60
6秒前
6秒前
yangp完成签到,获得积分10
6秒前
南北发布了新的文献求助50
7秒前
长至发布了新的文献求助10
7秒前
8秒前
8秒前
Syu发布了新的文献求助10
8秒前
所所应助清蒸鱼采纳,获得10
8秒前
开朗立世发布了新的文献求助30
9秒前
无极微光发布了新的文献求助20
9秒前
Ava应助6777777L采纳,获得10
9秒前
10秒前
10秒前
源西瓜完成签到,获得积分10
10秒前
Mingda发布了新的文献求助10
10秒前
乌拉拉发布了新的文献求助10
11秒前
baldman发布了新的文献求助10
11秒前
吕凯迪发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684323
求助须知:如何正确求助?哪些是违规求助? 5035995
关于积分的说明 15183907
捐赠科研通 4843598
什么是DOI,文献DOI怎么找? 2596736
邀请新用户注册赠送积分活动 1549447
关于科研通互助平台的介绍 1507972