Bilevel learning for large-scale flexible flow shop scheduling

启发式 调度(生产过程) 计算机科学 流水车间调度 双层优化 数学优化 人工智能 作业车间调度 数学 算法 操作系统 地铁列车时刻表 最优化问题
作者
Longkang Li,Xiaojin Fu,Hui‐Ling Zhen,Mingxuan Yuan,Jun Wang,Jiawen Lu,Xialiang Tong,Jia Zeng,Dirk Schnieders
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:168: 108140-108140 被引量:16
标识
DOI:10.1016/j.cie.2022.108140
摘要

• Effective and efficient scheduling method for large scale industrial problems. • Bilevel constraint Markov Decision Process to model the scheduling. • A theoretical guarantee of convergence to Stackelberg equilibrium. • Bilevel deep reinforcement learning framework to learn the problem. • Demonstrating the benefits of our method on benchmarks and industrial data. Many industrial practitioners are facing the challenge of solving large-scale scheduling problems within a limited time. In this paper, we propose a novel bilevel scheduler based on constraint Markov Decision Process to solve large-scale flexible flow shop scheduling problems (FFSP). There are many intelligent algorithms proposed to solve FFSP, but they take quite long time to execute or are even not working for large-scale problems. Our scheduler is able to decide the sequence of a large number of jobs in a limited time with the objective to minimize makespans. The upper level is designed to explore an initial global sequence, whereas the lower level aims to look for partial sequence refinements. In the implementation, Double Deep Q Network (DDQN) is used in the upper level and Graph Pointer Network (GPN) lies within the lower level. The two levels are connected by a sliding-window sampling mechanism. Based on datasets from public benchmarks and real-world industrial scenarios with over 5000 jobs, experiments show that our bilevel scheduler significantly outperforms seven baseline algorithms, including three state-of-the-art heuristics, three deep learning based algorithms, and another bilevel model, in terms of makespans and computational time. In particular, it only takes less than 200 s to get solutions of large-scale problems with up to 5000 jobs and matches the performance of the state-of-the-art heuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
眼睛大雨筠应助执着谷兰采纳,获得30
2秒前
lei应助YC采纳,获得20
2秒前
汉堡包应助伶俐芙采纳,获得10
2秒前
2秒前
3秒前
Ava应助胖达采纳,获得10
3秒前
3秒前
3秒前
HuFan1201完成签到 ,获得积分10
4秒前
后来发布了新的文献求助10
4秒前
geostar发布了新的文献求助10
5秒前
笑点低灵槐完成签到,获得积分10
6秒前
7秒前
Alice发布了新的文献求助10
8秒前
zyw0532完成签到,获得积分10
8秒前
melone发布了新的文献求助10
8秒前
HJY完成签到,获得积分10
9秒前
9秒前
胖达完成签到,获得积分10
9秒前
9秒前
10秒前
May应助哈哈哈采纳,获得10
10秒前
斯文败类应助龙哥采纳,获得10
10秒前
10秒前
倪晓琳完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
香蕉觅云应助AHR采纳,获得10
13秒前
13秒前
13秒前
在水一方应助AHR采纳,获得10
13秒前
Akim应助AHR采纳,获得10
13秒前
852应助AHR采纳,获得10
13秒前
13秒前
shawfang发布了新的文献求助10
13秒前
YC完成签到,获得积分10
13秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271