清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bilevel learning for large-scale flexible flow shop scheduling

启发式 调度(生产过程) 计算机科学 流水车间调度 双层优化 数学优化 人工智能 作业车间调度 数学 算法 操作系统 地铁列车时刻表 最优化问题
作者
Longkang Li,Xiaojin Fu,Hui‐Ling Zhen,Mingxuan Yuan,Jun Wang,Jiawen Lu,Xialiang Tong,Jia Zeng,Dirk Schnieders
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:168: 108140-108140 被引量:16
标识
DOI:10.1016/j.cie.2022.108140
摘要

• Effective and efficient scheduling method for large scale industrial problems. • Bilevel constraint Markov Decision Process to model the scheduling. • A theoretical guarantee of convergence to Stackelberg equilibrium. • Bilevel deep reinforcement learning framework to learn the problem. • Demonstrating the benefits of our method on benchmarks and industrial data. Many industrial practitioners are facing the challenge of solving large-scale scheduling problems within a limited time. In this paper, we propose a novel bilevel scheduler based on constraint Markov Decision Process to solve large-scale flexible flow shop scheduling problems (FFSP). There are many intelligent algorithms proposed to solve FFSP, but they take quite long time to execute or are even not working for large-scale problems. Our scheduler is able to decide the sequence of a large number of jobs in a limited time with the objective to minimize makespans. The upper level is designed to explore an initial global sequence, whereas the lower level aims to look for partial sequence refinements. In the implementation, Double Deep Q Network (DDQN) is used in the upper level and Graph Pointer Network (GPN) lies within the lower level. The two levels are connected by a sliding-window sampling mechanism. Based on datasets from public benchmarks and real-world industrial scenarios with over 5000 jobs, experiments show that our bilevel scheduler significantly outperforms seven baseline algorithms, including three state-of-the-art heuristics, three deep learning based algorithms, and another bilevel model, in terms of makespans and computational time. In particular, it only takes less than 200 s to get solutions of large-scale problems with up to 5000 jobs and matches the performance of the state-of-the-art heuristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘忧Aquarius完成签到,获得积分10
14秒前
加菲丰丰完成签到,获得积分0
18秒前
herococa应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
herococa应助科研通管家采纳,获得10
31秒前
GMEd1son完成签到,获得积分10
48秒前
1分钟前
1分钟前
合不着完成签到 ,获得积分10
1分钟前
fishss完成签到 ,获得积分0
1分钟前
辣小扬完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
诚心文博发布了新的文献求助10
2分钟前
2分钟前
herococa应助科研通管家采纳,获得10
2分钟前
herococa应助科研通管家采纳,获得10
2分钟前
herococa应助科研通管家采纳,获得10
2分钟前
2分钟前
V_I_G完成签到 ,获得积分0
3分钟前
画龙点睛完成签到 ,获得积分10
3分钟前
3分钟前
gszy1975完成签到,获得积分10
4分钟前
herococa应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
herococa应助科研通管家采纳,获得10
4分钟前
大个应助科研通管家采纳,获得10
4分钟前
herococa应助科研通管家采纳,获得10
4分钟前
lulu完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
鲤鱼山人完成签到 ,获得积分10
4分钟前
5分钟前
Hans完成签到,获得积分10
5分钟前
poki完成签到 ,获得积分10
6分钟前
笨笨完成签到 ,获得积分10
6分钟前
在水一方应助司连喜采纳,获得10
7分钟前
7分钟前
司连喜发布了新的文献求助10
8分钟前
8分钟前
搞怪的白云完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658238
求助须知:如何正确求助?哪些是违规求助? 4819039
关于积分的说明 15081093
捐赠科研通 4816737
什么是DOI,文献DOI怎么找? 2577590
邀请新用户注册赠送积分活动 1532508
关于科研通互助平台的介绍 1491143