已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bilevel learning for large-scale flexible flow shop scheduling

启发式 调度(生产过程) 计算机科学 流水车间调度 双层优化 数学优化 人工智能 作业车间调度 数学 算法 操作系统 地铁列车时刻表 最优化问题
作者
Longkang Li,Xiaojin Fu,Hui‐Ling Zhen,Mingxuan Yuan,Jun Wang,Jiawen Lu,Xialiang Tong,Jia Zeng,Dirk Schnieders
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:168: 108140-108140 被引量:16
标识
DOI:10.1016/j.cie.2022.108140
摘要

• Effective and efficient scheduling method for large scale industrial problems. • Bilevel constraint Markov Decision Process to model the scheduling. • A theoretical guarantee of convergence to Stackelberg equilibrium. • Bilevel deep reinforcement learning framework to learn the problem. • Demonstrating the benefits of our method on benchmarks and industrial data. Many industrial practitioners are facing the challenge of solving large-scale scheduling problems within a limited time. In this paper, we propose a novel bilevel scheduler based on constraint Markov Decision Process to solve large-scale flexible flow shop scheduling problems (FFSP). There are many intelligent algorithms proposed to solve FFSP, but they take quite long time to execute or are even not working for large-scale problems. Our scheduler is able to decide the sequence of a large number of jobs in a limited time with the objective to minimize makespans. The upper level is designed to explore an initial global sequence, whereas the lower level aims to look for partial sequence refinements. In the implementation, Double Deep Q Network (DDQN) is used in the upper level and Graph Pointer Network (GPN) lies within the lower level. The two levels are connected by a sliding-window sampling mechanism. Based on datasets from public benchmarks and real-world industrial scenarios with over 5000 jobs, experiments show that our bilevel scheduler significantly outperforms seven baseline algorithms, including three state-of-the-art heuristics, three deep learning based algorithms, and another bilevel model, in terms of makespans and computational time. In particular, it only takes less than 200 s to get solutions of large-scale problems with up to 5000 jobs and matches the performance of the state-of-the-art heuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
波波发布了新的文献求助10
刚刚
1秒前
浮游应助无奈的婷冉采纳,获得10
1秒前
2秒前
LeiWeI发布了新的文献求助10
3秒前
windy发布了新的文献求助10
3秒前
Asurary完成签到 ,获得积分10
3秒前
4秒前
善学以致用应助纸柒采纳,获得10
4秒前
Ava应助重要的冰绿采纳,获得10
6秒前
6秒前
丘比特应助斯文明杰采纳,获得10
7秒前
wtu发布了新的文献求助10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
11秒前
88mgsure完成签到 ,获得积分10
12秒前
笑相完成签到,获得积分10
12秒前
Takahara2000完成签到,获得积分10
14秒前
15秒前
songshubuhuifei完成签到,获得积分10
18秒前
20秒前
小跳a完成签到,获得积分10
20秒前
23秒前
24秒前
慕青应助千寒采纳,获得10
27秒前
jie完成签到 ,获得积分10
29秒前
31秒前
科研狗发布了新的文献求助10
31秒前
somnus_fu发布了新的文献求助10
34秒前
39秒前
40秒前
40秒前
41秒前
41秒前
碗_完成签到,获得积分10
43秒前
XH_L完成签到,获得积分10
43秒前
44秒前
44秒前
yy发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062897
求助须知:如何正确求助?哪些是违规求助? 4286624
关于积分的说明 13357436
捐赠科研通 4104423
什么是DOI,文献DOI怎么找? 2247516
邀请新用户注册赠送积分活动 1253077
关于科研通互助平台的介绍 1184043