Bilevel learning for large-scale flexible flow shop scheduling

启发式 调度(生产过程) 计算机科学 流水车间调度 双层优化 数学优化 人工智能 作业车间调度 数学 算法 操作系统 地铁列车时刻表 最优化问题
作者
Longkang Li,Xiaojin Fu,Hui‐Ling Zhen,Mingxuan Yuan,Jun Wang,Jiawen Lu,Xialiang Tong,Jia Zeng,Dirk Schnieders
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:168: 108140-108140 被引量:16
标识
DOI:10.1016/j.cie.2022.108140
摘要

• Effective and efficient scheduling method for large scale industrial problems. • Bilevel constraint Markov Decision Process to model the scheduling. • A theoretical guarantee of convergence to Stackelberg equilibrium. • Bilevel deep reinforcement learning framework to learn the problem. • Demonstrating the benefits of our method on benchmarks and industrial data. Many industrial practitioners are facing the challenge of solving large-scale scheduling problems within a limited time. In this paper, we propose a novel bilevel scheduler based on constraint Markov Decision Process to solve large-scale flexible flow shop scheduling problems (FFSP). There are many intelligent algorithms proposed to solve FFSP, but they take quite long time to execute or are even not working for large-scale problems. Our scheduler is able to decide the sequence of a large number of jobs in a limited time with the objective to minimize makespans. The upper level is designed to explore an initial global sequence, whereas the lower level aims to look for partial sequence refinements. In the implementation, Double Deep Q Network (DDQN) is used in the upper level and Graph Pointer Network (GPN) lies within the lower level. The two levels are connected by a sliding-window sampling mechanism. Based on datasets from public benchmarks and real-world industrial scenarios with over 5000 jobs, experiments show that our bilevel scheduler significantly outperforms seven baseline algorithms, including three state-of-the-art heuristics, three deep learning based algorithms, and another bilevel model, in terms of makespans and computational time. In particular, it only takes less than 200 s to get solutions of large-scale problems with up to 5000 jobs and matches the performance of the state-of-the-art heuristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深深完成签到,获得积分10
刚刚
刚刚
Hanif5329完成签到,获得积分10
1秒前
Wang完成签到,获得积分20
1秒前
在水一方应助ximi采纳,获得10
1秒前
瑶瑶酱完成签到,获得积分10
1秒前
Nil完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
Pluminata发布了新的文献求助10
3秒前
可爱的函函应助雷雷采纳,获得10
3秒前
CRANE发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
tangyuan发布了新的文献求助10
3秒前
科研通AI6应助现代宛丝采纳,获得10
4秒前
王可发布了新的文献求助10
4秒前
WEILAI完成签到 ,获得积分10
4秒前
大漂亮发布了新的文献求助10
4秒前
andy发布了新的文献求助10
6秒前
清浅发布了新的文献求助10
6秒前
6秒前
hhhyyyy完成签到,获得积分10
6秒前
7秒前
Goyounjung发布了新的文献求助10
7秒前
紫瓜发布了新的文献求助30
7秒前
7秒前
坚定的草丛完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
wanci应助HonneursW采纳,获得10
9秒前
顾矜应助copper采纳,获得10
9秒前
一颗糖完成签到 ,获得积分10
9秒前
10秒前
素简发布了新的文献求助10
11秒前
11秒前
1+1发布了新的文献求助10
12秒前
123456发布了新的文献求助20
12秒前
独特元蝶完成签到,获得积分20
12秒前
12秒前
123完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667453
求助须知:如何正确求助?哪些是违规求助? 4885755
关于积分的说明 15120132
捐赠科研通 4826235
什么是DOI,文献DOI怎么找? 2583865
邀请新用户注册赠送积分活动 1537959
关于科研通互助平台的介绍 1496082