Bilevel learning for large-scale flexible flow shop scheduling

启发式 调度(生产过程) 计算机科学 流水车间调度 双层优化 数学优化 人工智能 作业车间调度 数学 算法 操作系统 地铁列车时刻表 最优化问题
作者
Longkang Li,Xiaojin Fu,Hui‐Ling Zhen,Mingxuan Yuan,Jun Wang,Jiawen Lu,Xialiang Tong,Jia Zeng,Dirk Schnieders
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:168: 108140-108140 被引量:12
标识
DOI:10.1016/j.cie.2022.108140
摘要

• Effective and efficient scheduling method for large scale industrial problems. • Bilevel constraint Markov Decision Process to model the scheduling. • A theoretical guarantee of convergence to Stackelberg equilibrium. • Bilevel deep reinforcement learning framework to learn the problem. • Demonstrating the benefits of our method on benchmarks and industrial data. Many industrial practitioners are facing the challenge of solving large-scale scheduling problems within a limited time. In this paper, we propose a novel bilevel scheduler based on constraint Markov Decision Process to solve large-scale flexible flow shop scheduling problems (FFSP). There are many intelligent algorithms proposed to solve FFSP, but they take quite long time to execute or are even not working for large-scale problems. Our scheduler is able to decide the sequence of a large number of jobs in a limited time with the objective to minimize makespans. The upper level is designed to explore an initial global sequence, whereas the lower level aims to look for partial sequence refinements. In the implementation, Double Deep Q Network (DDQN) is used in the upper level and Graph Pointer Network (GPN) lies within the lower level. The two levels are connected by a sliding-window sampling mechanism. Based on datasets from public benchmarks and real-world industrial scenarios with over 5000 jobs, experiments show that our bilevel scheduler significantly outperforms seven baseline algorithms, including three state-of-the-art heuristics, three deep learning based algorithms, and another bilevel model, in terms of makespans and computational time. In particular, it only takes less than 200 s to get solutions of large-scale problems with up to 5000 jobs and matches the performance of the state-of-the-art heuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
和谐乌龟发布了新的文献求助10
刚刚
zZ完成签到,获得积分10
刚刚
科研小白完成签到,获得积分10
刚刚
LYY发布了新的文献求助10
1秒前
wangfu完成签到,获得积分10
1秒前
ding应助Dddd采纳,获得10
2秒前
yin发布了新的文献求助10
2秒前
大模型应助张张采纳,获得10
2秒前
Akim应助吾问无为谓采纳,获得10
3秒前
3秒前
神勇的冰姬完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
tony完成签到,获得积分10
6秒前
Uynaux发布了新的文献求助30
6秒前
SONG完成签到,获得积分10
6秒前
SYLH应助干秋白采纳,获得10
7秒前
7秒前
风雨1210发布了新的文献求助10
8秒前
文艺书雪完成签到 ,获得积分10
8秒前
独行侠完成签到,获得积分10
8秒前
9秒前
我测你码发布了新的文献求助10
9秒前
又要起名字完成签到,获得积分10
9秒前
9秒前
9秒前
damian完成签到,获得积分10
10秒前
LiShin发布了新的文献求助10
10秒前
渝州人应助凤凰山采纳,获得10
11秒前
sweetbearm应助凤凰山采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
yizhiGao应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
顾矜应助随机起的名采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794