Learning ordinal constraint binary codes for fast similarity search

计算机科学 与K无关的哈希 散列函数 判别式 通用哈希 二进制代码 理论计算机科学 动态完美哈希 子空间拓扑 特征哈希 人工智能 特征向量 特征学习 机器学习 模式识别(心理学) 哈希表 二进制数 数学 双重哈希 计算机安全 算术
作者
Zheng Zhang,Chi‐Man Pun
出处
期刊:Information Processing and Management [Elsevier]
卷期号:59 (3): 102919-102919 被引量:4
标识
DOI:10.1016/j.ipm.2022.102919
摘要

Similarity search with hashing has become one of the fundamental research topics in computer vision and multimedia. The current researches on semantic-preserving hashing mainly focus on exploring the semantic similarities between pointwise or pairwise samples in the visual space to generate discriminative hash codes. However, such learning schemes fail to explore the intrinsic latent features embedded in the high-dimensional feature space and they are difficult to capture the underlying topological structure of data, yielding low-quality hash codes for image retrieval. In this paper, we propose an ordinal-preserving latent graph hashing (OLGH) method, which derives the objective hash codes from the latent space and preserves the high-order locally topological structure of data into the learned hash codes. Specifically, we conceive a triplet constrained topology-preserving loss to uncover the ordinal-inferred local features in binary representation learning. By virtue of this, the learning system can implicitly capture the high-order similarities among samples during the feature learning process. Moreover, the well-designed latent subspace learning is built to acquire the noise-free latent features based on the sparse constrained supervised learning. As such, the latent under-explored characteristics of data are fully employed in subspace construction. Furthermore, the latent ordinal graph hashing is formulated by jointly exploiting latent space construction and ordinal graph learning. An efficient optimization algorithm is developed to solve the resulting problem to achieve the optimal solution. Extensive experiments conducted on diverse datasets show the effectiveness and superiority of the proposed method when compared to some advanced learning to hash algorithms for fast image retrieval. The source codes of this paper are available at https://github.com/DarrenZZhang/OLGH .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小洪俊熙完成签到,获得积分10
刚刚
123完成签到,获得积分10
刚刚
SYLH应助di采纳,获得10
刚刚
刚刚
柒毛完成签到 ,获得积分10
1秒前
搜集达人应助tatata采纳,获得20
1秒前
英俊的铭应助诚c采纳,获得10
1秒前
兔子完成签到 ,获得积分10
1秒前
1秒前
苹果巧蕊完成签到 ,获得积分10
1秒前
脑洞疼应助SDS采纳,获得10
1秒前
JamesPei应助Guo采纳,获得20
2秒前
马保国123完成签到,获得积分10
2秒前
2秒前
2秒前
迷你的冰巧完成签到,获得积分10
2秒前
万能图书馆应助学术蝗虫采纳,获得10
3秒前
慕青应助aurora采纳,获得30
3秒前
Jasper应助满意的盼夏采纳,获得10
3秒前
yitang完成签到,获得积分10
5秒前
www完成签到,获得积分10
5秒前
zhenzhen发布了新的文献求助10
5秒前
飞羽发布了新的文献求助10
5秒前
江沅完成签到 ,获得积分10
5秒前
6秒前
6秒前
Sean完成签到,获得积分10
6秒前
兜兜完成签到 ,获得积分10
6秒前
羊羊羊发布了新的文献求助10
7秒前
Rui完成签到,获得积分10
7秒前
bigger.b完成签到,获得积分10
7秒前
Nerissa完成签到,获得积分10
7秒前
Dr.Tang发布了新的文献求助10
7秒前
7秒前
田様应助笑点低蜜蜂采纳,获得10
7秒前
英俊的铭应助么系么系采纳,获得10
8秒前
ding应助寒冷的奇异果采纳,获得10
8秒前
lx发布了新的文献求助10
9秒前
舒适念真发布了新的文献求助10
9秒前
沉默哈密瓜完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678