Exploring potential machine learning application based on big data for prediction of wastewater quality from different full-scale wastewater treatment plants

废水 均方误差 污水处理 自适应神经模糊推理系统 随机森林 水质 支持向量机 环境科学 计算机科学 梯度升压 机器学习 环境工程 人工智能 统计 数学 模糊逻辑 模糊控制系统 生态学 生物
作者
Quang Viet Ly,Viet Hung Truong,Bingxuan Ji,Xuan Cuong Nguyen,Kyung Hwa Cho,Huu Hao Ngo,Zhenghua Zhang
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:832: 154930-154930 被引量:37
标识
DOI:10.1016/j.scitotenv.2022.154930
摘要

Water pollution generated from intensive anthropogenic activities has emerged as a critical issue concerning ecosystem balance and livelihoods worldwide. Although optimizing wastewater treatment efficiency is widely regarded as the foremost step to minimize pollutants released into the environment, this widespread application has encountered two major problems: firstly, the significant variation of influent wastewater constituents; secondly, complex treatment processes within wastewater treatment plants (WWTPs). Based on the data collected hourly using real-time sensors in three different full-scale WWTPs (24 h × 365 days × 3 WWTPs × 10 wastewater parameters), this work introduced the potential application of Machine Learning (ML) to predict wastewater quality. In this work, six different ML algorithms were examined and compared, varying from shallow to deep learning architectures including Seasonal Autoregressive Integrated Moving Average (SARIMAX), Random Forest (RF), Support Vector Machine (SVM), Gradient Tree Boosting (GTB), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Long Short-Term Memory (LSTM). These models were developed to detect total phosphorus in the outlet (Outlet-TP), which served as an output variable due to the rising concerns about the eutrophication problem. Irrespective of WWTPs, SARIMAX consistently demonstrated the best performance for regression estimation as evidenced by the lowest values of Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and the highest coefficient of determination (R2). In terms of computation efficiency, SARIMAX exhibited acceptable time computation, acknowledging the successful application of this algorithm for Outlet-TP modeling. In contrast, the complex structure of LSTM made it time-consuming and unstable coupled with noise, while other shallower architectures, i.e., RF, SVM, GTB, and ANFIS were unable to address large datasets with nonlinear and nonstationary behavior. Consequently, this study provides a reliable and accurate approach to forecast wastewater effluent quality, which is pivotal in terms of the socio-economic aspects of wastewater management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鑫渊完成签到,获得积分10
1秒前
丘比特应助Dicy采纳,获得10
2秒前
乐乐应助vicky采纳,获得10
3秒前
3秒前
绿色催化完成签到,获得积分10
4秒前
福福发布了新的文献求助10
4秒前
坦率的匪应助谷德耐采纳,获得10
5秒前
5秒前
撸撸大仙发布了新的文献求助10
5秒前
5秒前
Nothing完成签到,获得积分10
6秒前
6秒前
7秒前
wtt发布了新的文献求助10
8秒前
8秒前
8秒前
旅行者发布了新的文献求助10
10秒前
wtt完成签到,获得积分10
13秒前
虚幻的采萱完成签到,获得积分20
14秒前
mailure发布了新的文献求助10
14秒前
科研通AI5应助zhouz采纳,获得10
15秒前
15秒前
700w完成签到 ,获得积分0
15秒前
16秒前
共享精神应助旅行者采纳,获得10
18秒前
香蕉觅云应助charles采纳,获得20
19秒前
福福完成签到,获得积分10
19秒前
天天快乐应助111采纳,获得10
19秒前
娟儿完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
淡然完成签到,获得积分20
24秒前
Owen应助Aria采纳,获得10
26秒前
tang完成签到,获得积分10
26秒前
萧水白应助liaomr采纳,获得10
27秒前
伶俐绿柏完成签到 ,获得积分10
27秒前
da发布了新的文献求助10
28秒前
Mss发布了新的文献求助10
28秒前
SMULJL发布了新的文献求助10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152