Probing an intelligent predictive maintenance approach with deep learning and augmented reality for machine tools in IoT-enabled manufacturing

预测性维护 预言 停工期 计算机科学 地铁列车时刻表 机器学习 可靠性(半导体) 人工智能 状态维修 断层(地质) 可靠性工程 工程类 数据挖掘 功率(物理) 物理 量子力学 地震学 地质学 操作系统
作者
Changchun Liu,Haihua Zhu,Dunbing Tang,Qingwei Nie,Tong Zhou,Liping Wang,Yejia Song
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier BV]
卷期号:77: 102357-102357 被引量:61
标识
DOI:10.1016/j.rcim.2022.102357
摘要

In the Industry 4.0 era, the number and complexity of machine tools are both increased, which is prone to cause malfunctions and downtime in the manufacturing process. Predictive Maintenance (PdM), as a pivotal part of Prognostics and Health Management (PHM), plays a vital role in enhancing the reliability of machine tools in the Internet of Things (IoT)-enabled manufacturing. In order to realize a highly reliable maintenance plan integrated with the fault prediction, the maintenance decision-making, and the Augmented Reality (AR)-enabled auxiliary maintenance, an intelligent predictive maintenance approach for machine tools is proposed in this paper via multiple services cooperating within a single framework. The fault prediction service is supported by the combination of Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM). Specified features from massive production data acquired by IoT can be comprehensively extracted using CNN, and their nonlinear relationship can be fitted by LSTM. Based on the fault prediction result, deep reinforcement learning is adopted to achieve the production control and schedule maintenance personnel if a fault code appears. On top of this, the guidance information from the maintenance experience database can be integrated into the faulty machine tools in the form of visibility through AR, which can guide the maintenance personnel to complete maintenance tasks more efficiently. Moreover, the remote expert service is also integrated in the AR-supported auxiliary maintenance, which is activated to solve unexpected faults that are not stored in the maintenance experience database. Comparative experiments are conducted in the IoT-enabled manufacturing workshop with real-world case studies, and the results demonstrate that the proposed predictive maintenance approach is both effective and practical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助wyh3218采纳,获得10
刚刚
比巴卜发布了新的文献求助10
刚刚
浩浩浩发布了新的文献求助10
刚刚
CcC发布了新的文献求助10
1秒前
菲菲鱼丸发布了新的文献求助20
2秒前
ttli完成签到,获得积分20
2秒前
Laus发布了新的文献求助30
2秒前
欣喜沛芹发布了新的文献求助10
2秒前
科研通AI5应助好名字采纳,获得10
2秒前
完美世界应助LC采纳,获得10
3秒前
3秒前
3秒前
yihoxu完成签到,获得积分20
4秒前
bkagyin应助hyx采纳,获得10
5秒前
5秒前
米线儿完成签到,获得积分10
5秒前
CHEMS完成签到,获得积分10
6秒前
大个应助糊糊采纳,获得10
6秒前
狂奔弟弟发布了新的文献求助10
7秒前
科研通AI2S应助zrd采纳,获得10
8秒前
迷人白梦关注了科研通微信公众号
8秒前
小luo完成签到 ,获得积分10
8秒前
8秒前
9秒前
mmyhn发布了新的文献求助50
9秒前
10秒前
10秒前
甜橙子发布了新的文献求助10
10秒前
10秒前
等待的花卷完成签到,获得积分10
10秒前
FashionBoy应助比巴卜采纳,获得10
10秒前
11秒前
科研通AI5应助Laus采纳,获得10
12秒前
李爱国应助冯爽采纳,获得10
13秒前
DJDJ完成签到,获得积分10
13秒前
13秒前
maomao发布了新的文献求助10
14秒前
熊大哥发布了新的文献求助10
14秒前
御风完成签到,获得积分10
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769083
求助须知:如何正确求助?哪些是违规求助? 3314085
关于积分的说明 10170792
捐赠科研通 3029180
什么是DOI,文献DOI怎么找? 1662260
邀请新用户注册赠送积分活动 794787
科研通“疑难数据库(出版商)”最低求助积分说明 756421