Probing an intelligent predictive maintenance approach with deep learning and augmented reality for machine tools in IoT-enabled manufacturing

预测性维护 预言 停工期 计算机科学 地铁列车时刻表 机器学习 可靠性(半导体) 人工智能 状态维修 断层(地质) 可靠性工程 工程类 数据挖掘 功率(物理) 物理 量子力学 地震学 地质学 操作系统
作者
Changchun Liu,Haihua Zhu,Dunbing Tang,Qingwei Nie,Tong Zhou,Liping Wang,Yejia Song
出处
期刊:Robotics and Computer-integrated Manufacturing [Elsevier]
卷期号:77: 102357-102357 被引量:61
标识
DOI:10.1016/j.rcim.2022.102357
摘要

In the Industry 4.0 era, the number and complexity of machine tools are both increased, which is prone to cause malfunctions and downtime in the manufacturing process. Predictive Maintenance (PdM), as a pivotal part of Prognostics and Health Management (PHM), plays a vital role in enhancing the reliability of machine tools in the Internet of Things (IoT)-enabled manufacturing. In order to realize a highly reliable maintenance plan integrated with the fault prediction, the maintenance decision-making, and the Augmented Reality (AR)-enabled auxiliary maintenance, an intelligent predictive maintenance approach for machine tools is proposed in this paper via multiple services cooperating within a single framework. The fault prediction service is supported by the combination of Convolutional Neural Network and Long Short-Term Memory (CNN-LSTM). Specified features from massive production data acquired by IoT can be comprehensively extracted using CNN, and their nonlinear relationship can be fitted by LSTM. Based on the fault prediction result, deep reinforcement learning is adopted to achieve the production control and schedule maintenance personnel if a fault code appears. On top of this, the guidance information from the maintenance experience database can be integrated into the faulty machine tools in the form of visibility through AR, which can guide the maintenance personnel to complete maintenance tasks more efficiently. Moreover, the remote expert service is also integrated in the AR-supported auxiliary maintenance, which is activated to solve unexpected faults that are not stored in the maintenance experience database. Comparative experiments are conducted in the IoT-enabled manufacturing workshop with real-world case studies, and the results demonstrate that the proposed predictive maintenance approach is both effective and practical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kayla完成签到 ,获得积分10
刚刚
tomorrow505应助落寞的玉兰采纳,获得10
1秒前
1秒前
2秒前
5秒前
霸气忙内发布了新的文献求助10
6秒前
小辉发布了新的文献求助10
7秒前
8秒前
着急的又晴完成签到 ,获得积分10
12秒前
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
Hello应助Cathy采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得30
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
大模型应助科研通管家采纳,获得10
14秒前
14秒前
17秒前
梁晓玲发布了新的文献求助10
17秒前
17秒前
18秒前
喻鞅完成签到,获得积分10
18秒前
19秒前
20秒前
冷月完成签到,获得积分10
20秒前
红炉点血发布了新的文献求助10
24秒前
Jasper应助神勇的含雁采纳,获得10
25秒前
顾矜应助迅速如波采纳,获得10
26秒前
Diamond发布了新的文献求助10
27秒前
快乐滑板发布了新的文献求助10
27秒前
29秒前
Ss如意完成签到,获得积分10
30秒前
77关注了科研通微信公众号
31秒前
aa发布了新的文献求助10
33秒前
Lucas应助务实的映菡采纳,获得10
37秒前
Ganlou应助舒适谷兰采纳,获得30
37秒前
37秒前
38秒前
38秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329501
求助须知:如何正确求助?哪些是违规求助? 2959146
关于积分的说明 8594396
捐赠科研通 2637597
什么是DOI,文献DOI怎么找? 1443667
科研通“疑难数据库(出版商)”最低求助积分说明 668794
邀请新用户注册赠送积分活动 656220