Improved Na+ estimation from hyperspectral data of saline vegetation by machine learning

高光谱成像 随机森林 支持向量机 均方误差 植被(病理学) 遥感 偏最小二乘回归 数学 人工智能 机器学习 环境科学 计算机科学 统计 地理 医学 病理
作者
Daosheng Chen,Zhang Fei,Mou Leong Tan,Ngai Weng Chan,Jingchao Shi,Changjiang Liu,Weiwei Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106862-106862 被引量:19
标识
DOI:10.1016/j.compag.2022.106862
摘要

Monitoring the growth state of vegetation using remote sensing is the current trends in agricultural research. This study aims to identify an optimal hyperspectral vegetation extraction framework to improve leaf Na+ monitoring in the northwestern part of China based on the hyperspectral data of saline vegetation. The Partial Least Squares (PLS), Support Vector Machine (SVM), Random Forest (RF) models were constructed to model the leaf Na+, while the Aggregated Boosted Tree (ABT) and Random Forest (RF) variable importance screening methods were used to optimize the variables in the leaf Na+ extraction. Then, the optimal variable screening method and the model of inverting vegetation Na+ was identified. The results showed that the estimation of Na+ content within saline vegetation leaves by constructing spectral indices is feasible as 33 vegetation indices meets the requirements, the RF (R2 = 0.73, RMSE = 0.50) and PLS (R2 = 0.72, RMSE = 0.59) models are relatively good, followed by the SVM (R2 = 0.68, RMSE = 0.53) model. In addition, all the three models have been improved using the ABT variable importance screening method, where the RF (R2 = 0.81, RMSE = 0.42) model had the most satisfactory effect. Similarly, based on the RF importance screening method, all the three models have improved significantly, among which the most effective was the SVM (R2 = 0.82, RMSE = 0.45) model. This study indicates that ABT-RF and RF-SVM are the most ideal combination framework to invert the Na+ content of saline vegetation leaves. This study brings out some inspiration for the combination between the screening approach of variables and model building, improving the accuracy of hyperspectral sensor to monitor the changes in the relevant chemical characteristics of vegetation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666发布了新的文献求助10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
1秒前
思源应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
爱笑的若雁完成签到,获得积分10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
Hiccupsssss完成签到,获得积分10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
2秒前
田田应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
chenqiumu应助zzzshy采纳,获得30
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
852应助高志博采纳,获得10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
深情安青应助Later采纳,获得10
5秒前
hxpxp完成签到,获得积分10
5秒前
dd发布了新的文献求助20
5秒前
6秒前
Bazinga完成签到,获得积分10
6秒前
浮游应助呀哦呀采纳,获得10
6秒前
科研通AI6应助酷炫傲安采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884