Improved Na+ estimation from hyperspectral data of saline vegetation by machine learning

高光谱成像 随机森林 支持向量机 均方误差 植被(病理学) 遥感 偏最小二乘回归 数学 人工智能 机器学习 环境科学 计算机科学 统计 地理 医学 病理
作者
Daosheng Chen,Zhang Fei,Mou Leong Tan,Ngai Weng Chan,Jingchao Shi,Changjiang Liu,Weiwei Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106862-106862 被引量:19
标识
DOI:10.1016/j.compag.2022.106862
摘要

Monitoring the growth state of vegetation using remote sensing is the current trends in agricultural research. This study aims to identify an optimal hyperspectral vegetation extraction framework to improve leaf Na+ monitoring in the northwestern part of China based on the hyperspectral data of saline vegetation. The Partial Least Squares (PLS), Support Vector Machine (SVM), Random Forest (RF) models were constructed to model the leaf Na+, while the Aggregated Boosted Tree (ABT) and Random Forest (RF) variable importance screening methods were used to optimize the variables in the leaf Na+ extraction. Then, the optimal variable screening method and the model of inverting vegetation Na+ was identified. The results showed that the estimation of Na+ content within saline vegetation leaves by constructing spectral indices is feasible as 33 vegetation indices meets the requirements, the RF (R2 = 0.73, RMSE = 0.50) and PLS (R2 = 0.72, RMSE = 0.59) models are relatively good, followed by the SVM (R2 = 0.68, RMSE = 0.53) model. In addition, all the three models have been improved using the ABT variable importance screening method, where the RF (R2 = 0.81, RMSE = 0.42) model had the most satisfactory effect. Similarly, based on the RF importance screening method, all the three models have improved significantly, among which the most effective was the SVM (R2 = 0.82, RMSE = 0.45) model. This study indicates that ABT-RF and RF-SVM are the most ideal combination framework to invert the Na+ content of saline vegetation leaves. This study brings out some inspiration for the combination between the screening approach of variables and model building, improving the accuracy of hyperspectral sensor to monitor the changes in the relevant chemical characteristics of vegetation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
李爱国应助研团团采纳,获得10
1秒前
ygg发布了新的文献求助10
2秒前
vivid发布了新的文献求助10
2秒前
七月夏栀完成签到,获得积分10
3秒前
LL_9999发布了新的文献求助30
3秒前
srf0602.发布了新的文献求助10
4秒前
cctv18应助coolkid采纳,获得10
4秒前
6秒前
DTiverson发布了新的文献求助10
8秒前
8秒前
8秒前
天人合一发布了新的文献求助10
9秒前
10秒前
11秒前
肉脸小鱼发布了新的文献求助10
11秒前
12秒前
顾矜应助CC采纳,获得10
13秒前
13秒前
tutu发布了新的文献求助10
13秒前
科研通AI2S应助完美的海秋采纳,获得10
13秒前
sgem完成签到,获得积分10
14秒前
研团团发布了新的文献求助10
14秒前
云游归尘完成签到 ,获得积分10
15秒前
15秒前
徐1完成签到 ,获得积分10
15秒前
15秒前
16秒前
机械腾完成签到,获得积分10
16秒前
SciGPT应助于芋菊采纳,获得10
16秒前
仁和远发布了新的文献求助10
16秒前
上杉绘梨衣关注了科研通微信公众号
17秒前
19秒前
vivid完成签到,获得积分10
20秒前
周贝壳发布了新的文献求助10
20秒前
20秒前
21秒前
科研通AI2S应助qianqian采纳,获得10
24秒前
小美爱科研完成签到,获得积分10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243773
求助须知:如何正确求助?哪些是违规求助? 2887609
关于积分的说明 8249256
捐赠科研通 2556298
什么是DOI,文献DOI怎么找? 1384427
科研通“疑难数据库(出版商)”最低求助积分说明 649847
邀请新用户注册赠送积分活动 625794