Improved Na+ estimation from hyperspectral data of saline vegetation by machine learning

高光谱成像 随机森林 支持向量机 均方误差 植被(病理学) 遥感 偏最小二乘回归 数学 人工智能 机器学习 环境科学 计算机科学 统计 地理 医学 病理
作者
Daosheng Chen,Zhang Fei,Mou Leong Tan,Ngai Weng Chan,Jingchao Shi,Changjiang Liu,Weiwei Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:196: 106862-106862 被引量:19
标识
DOI:10.1016/j.compag.2022.106862
摘要

Monitoring the growth state of vegetation using remote sensing is the current trends in agricultural research. This study aims to identify an optimal hyperspectral vegetation extraction framework to improve leaf Na+ monitoring in the northwestern part of China based on the hyperspectral data of saline vegetation. The Partial Least Squares (PLS), Support Vector Machine (SVM), Random Forest (RF) models were constructed to model the leaf Na+, while the Aggregated Boosted Tree (ABT) and Random Forest (RF) variable importance screening methods were used to optimize the variables in the leaf Na+ extraction. Then, the optimal variable screening method and the model of inverting vegetation Na+ was identified. The results showed that the estimation of Na+ content within saline vegetation leaves by constructing spectral indices is feasible as 33 vegetation indices meets the requirements, the RF (R2 = 0.73, RMSE = 0.50) and PLS (R2 = 0.72, RMSE = 0.59) models are relatively good, followed by the SVM (R2 = 0.68, RMSE = 0.53) model. In addition, all the three models have been improved using the ABT variable importance screening method, where the RF (R2 = 0.81, RMSE = 0.42) model had the most satisfactory effect. Similarly, based on the RF importance screening method, all the three models have improved significantly, among which the most effective was the SVM (R2 = 0.82, RMSE = 0.45) model. This study indicates that ABT-RF and RF-SVM are the most ideal combination framework to invert the Na+ content of saline vegetation leaves. This study brings out some inspiration for the combination between the screening approach of variables and model building, improving the accuracy of hyperspectral sensor to monitor the changes in the relevant chemical characteristics of vegetation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暖风完成签到,获得积分20
刚刚
1秒前
FashionBoy应助温杨杨采纳,获得10
1秒前
科研通AI6应助chenjun7080采纳,获得10
2秒前
舒心樱桃发布了新的文献求助10
2秒前
今后应助frost采纳,获得10
2秒前
伯言完成签到,获得积分10
4秒前
JamesPei应助优雅吐司采纳,获得30
4秒前
郭团团完成签到,获得积分10
4秒前
5秒前
老阎应助mkb采纳,获得30
5秒前
Zunseng发布了新的文献求助10
6秒前
6秒前
6秒前
ZONG发布了新的文献求助10
6秒前
daydayup发布了新的文献求助10
7秒前
YY完成签到 ,获得积分10
7秒前
聪慧的正豪应助DDDD采纳,获得10
7秒前
7秒前
Emb完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
10秒前
LZQ921发布了新的文献求助10
10秒前
李鱼丸完成签到,获得积分10
10秒前
xiaofenzi发布了新的文献求助10
10秒前
江峰完成签到,获得积分10
10秒前
美好斓发布了新的文献求助10
10秒前
11秒前
小王同学完成签到,获得积分10
11秒前
万能图书馆应助LD采纳,获得10
11秒前
xinanan完成签到,获得积分10
11秒前
12秒前
浮游应助舒心樱桃采纳,获得10
13秒前
卡卡完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
团子完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5000907
求助须知:如何正确求助?哪些是违规求助? 4246114
关于积分的说明 13228378
捐赠科研通 4044634
什么是DOI,文献DOI怎么找? 2212800
邀请新用户注册赠送积分活动 1222943
关于科研通互助平台的介绍 1143240