Improved Na+ estimation from hyperspectral data of saline vegetation by machine learning

高光谱成像 随机森林 支持向量机 均方误差 植被(病理学) 遥感 偏最小二乘回归 数学 人工智能 机器学习 环境科学 计算机科学 统计 地理 医学 病理
作者
Daosheng Chen,Zhang Fei,Mou Leong Tan,Ngai Weng Chan,Jingchao Shi,Changjiang Liu,Weiwei Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106862-106862 被引量:19
标识
DOI:10.1016/j.compag.2022.106862
摘要

Monitoring the growth state of vegetation using remote sensing is the current trends in agricultural research. This study aims to identify an optimal hyperspectral vegetation extraction framework to improve leaf Na+ monitoring in the northwestern part of China based on the hyperspectral data of saline vegetation. The Partial Least Squares (PLS), Support Vector Machine (SVM), Random Forest (RF) models were constructed to model the leaf Na+, while the Aggregated Boosted Tree (ABT) and Random Forest (RF) variable importance screening methods were used to optimize the variables in the leaf Na+ extraction. Then, the optimal variable screening method and the model of inverting vegetation Na+ was identified. The results showed that the estimation of Na+ content within saline vegetation leaves by constructing spectral indices is feasible as 33 vegetation indices meets the requirements, the RF (R2 = 0.73, RMSE = 0.50) and PLS (R2 = 0.72, RMSE = 0.59) models are relatively good, followed by the SVM (R2 = 0.68, RMSE = 0.53) model. In addition, all the three models have been improved using the ABT variable importance screening method, where the RF (R2 = 0.81, RMSE = 0.42) model had the most satisfactory effect. Similarly, based on the RF importance screening method, all the three models have improved significantly, among which the most effective was the SVM (R2 = 0.82, RMSE = 0.45) model. This study indicates that ABT-RF and RF-SVM are the most ideal combination framework to invert the Na+ content of saline vegetation leaves. This study brings out some inspiration for the combination between the screening approach of variables and model building, improving the accuracy of hyperspectral sensor to monitor the changes in the relevant chemical characteristics of vegetation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拉姆发布了新的文献求助10
刚刚
高高曼彤关注了科研通微信公众号
刚刚
xiakui发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
dudu发布了新的文献求助10
1秒前
xiang完成签到,获得积分10
1秒前
MY完成签到,获得积分10
1秒前
1秒前
aaaaa发布了新的文献求助10
1秒前
搞怪路灯发布了新的文献求助10
2秒前
脑洞疼应助天气晴朗采纳,获得10
2秒前
2秒前
Eden发布了新的文献求助10
2秒前
幸福小猫发布了新的文献求助10
2秒前
简单平蓝完成签到,获得积分10
3秒前
3秒前
无糖加冰完成签到,获得积分10
3秒前
shenzhou9完成签到,获得积分10
3秒前
dgbsw完成签到,获得积分10
3秒前
柚柚发布了新的文献求助10
4秒前
4秒前
sherry完成签到,获得积分20
4秒前
4秒前
一杯半茶完成签到,获得积分10
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
bkagyin应助文艺的从波采纳,获得10
5秒前
霞子发布了新的文献求助10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
5秒前
光热效应发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
爱听歌时光完成签到,获得积分10
5秒前
5秒前
小陈同学应助科研通管家采纳,获得10
5秒前
SciGPT应助韩保晨采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590