亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved Na+ estimation from hyperspectral data of saline vegetation by machine learning

高光谱成像 随机森林 支持向量机 均方误差 植被(病理学) 遥感 偏最小二乘回归 数学 人工智能 机器学习 环境科学 计算机科学 统计 地理 医学 病理
作者
Daosheng Chen,Zhang Fei,Mou Leong Tan,Ngai Weng Chan,Jingchao Shi,Changjiang Liu,Weiwei Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:196: 106862-106862 被引量:19
标识
DOI:10.1016/j.compag.2022.106862
摘要

Monitoring the growth state of vegetation using remote sensing is the current trends in agricultural research. This study aims to identify an optimal hyperspectral vegetation extraction framework to improve leaf Na+ monitoring in the northwestern part of China based on the hyperspectral data of saline vegetation. The Partial Least Squares (PLS), Support Vector Machine (SVM), Random Forest (RF) models were constructed to model the leaf Na+, while the Aggregated Boosted Tree (ABT) and Random Forest (RF) variable importance screening methods were used to optimize the variables in the leaf Na+ extraction. Then, the optimal variable screening method and the model of inverting vegetation Na+ was identified. The results showed that the estimation of Na+ content within saline vegetation leaves by constructing spectral indices is feasible as 33 vegetation indices meets the requirements, the RF (R2 = 0.73, RMSE = 0.50) and PLS (R2 = 0.72, RMSE = 0.59) models are relatively good, followed by the SVM (R2 = 0.68, RMSE = 0.53) model. In addition, all the three models have been improved using the ABT variable importance screening method, where the RF (R2 = 0.81, RMSE = 0.42) model had the most satisfactory effect. Similarly, based on the RF importance screening method, all the three models have improved significantly, among which the most effective was the SVM (R2 = 0.82, RMSE = 0.45) model. This study indicates that ABT-RF and RF-SVM are the most ideal combination framework to invert the Na+ content of saline vegetation leaves. This study brings out some inspiration for the combination between the screening approach of variables and model building, improving the accuracy of hyperspectral sensor to monitor the changes in the relevant chemical characteristics of vegetation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧凡雁完成签到,获得积分10
3秒前
英姑应助聪慧凡雁采纳,获得10
6秒前
YYL完成签到 ,获得积分10
9秒前
13秒前
聪慧凡雁发布了新的文献求助10
19秒前
科研通AI6应助哈哈我采纳,获得10
27秒前
guanoo完成签到,获得积分10
41秒前
求助中完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助麻辣香锅采纳,获得10
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
旷野完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
文献求助发布了新的文献求助10
1分钟前
安芳发布了新的文献求助20
1分钟前
1分钟前
VDC发布了新的文献求助10
1分钟前
1分钟前
YNHN发布了新的文献求助10
2分钟前
华仔应助自行车采纳,获得30
2分钟前
儒雅的十八完成签到,获得积分10
2分钟前
Criminology34举报tttt求助涉嫌违规
2分钟前
李健应助YNHN采纳,获得10
2分钟前
研究XPD的小麻薯完成签到,获得积分10
2分钟前
bkagyin应助安芳采纳,获得10
2分钟前
2分钟前
哈哈我发布了新的文献求助10
2分钟前
2分钟前
自行车发布了新的文献求助30
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650903
求助须知:如何正确求助?哪些是违规求助? 4782013
关于积分的说明 15052718
捐赠科研通 4809666
什么是DOI,文献DOI怎么找? 2572478
邀请新用户注册赠送积分活动 1528514
关于科研通互助平台的介绍 1487478