Improved Na+ estimation from hyperspectral data of saline vegetation by machine learning

高光谱成像 随机森林 支持向量机 均方误差 植被(病理学) 遥感 偏最小二乘回归 数学 人工智能 机器学习 环境科学 计算机科学 统计 地理 医学 病理
作者
Daosheng Chen,Zhang Fei,Mou Leong Tan,Ngai Weng Chan,Jingchao Shi,Changjiang Liu,Weiwei Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:196: 106862-106862 被引量:19
标识
DOI:10.1016/j.compag.2022.106862
摘要

Monitoring the growth state of vegetation using remote sensing is the current trends in agricultural research. This study aims to identify an optimal hyperspectral vegetation extraction framework to improve leaf Na+ monitoring in the northwestern part of China based on the hyperspectral data of saline vegetation. The Partial Least Squares (PLS), Support Vector Machine (SVM), Random Forest (RF) models were constructed to model the leaf Na+, while the Aggregated Boosted Tree (ABT) and Random Forest (RF) variable importance screening methods were used to optimize the variables in the leaf Na+ extraction. Then, the optimal variable screening method and the model of inverting vegetation Na+ was identified. The results showed that the estimation of Na+ content within saline vegetation leaves by constructing spectral indices is feasible as 33 vegetation indices meets the requirements, the RF (R2 = 0.73, RMSE = 0.50) and PLS (R2 = 0.72, RMSE = 0.59) models are relatively good, followed by the SVM (R2 = 0.68, RMSE = 0.53) model. In addition, all the three models have been improved using the ABT variable importance screening method, where the RF (R2 = 0.81, RMSE = 0.42) model had the most satisfactory effect. Similarly, based on the RF importance screening method, all the three models have improved significantly, among which the most effective was the SVM (R2 = 0.82, RMSE = 0.45) model. This study indicates that ABT-RF and RF-SVM are the most ideal combination framework to invert the Na+ content of saline vegetation leaves. This study brings out some inspiration for the combination between the screening approach of variables and model building, improving the accuracy of hyperspectral sensor to monitor the changes in the relevant chemical characteristics of vegetation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
躺平小李完成签到,获得积分10
刚刚
2秒前
鱼鱼鱼完成签到,获得积分10
2秒前
2秒前
3秒前
Xxx完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
6秒前
aaiirrii发布了新的文献求助20
6秒前
完美世界应助whisperbreeze采纳,获得10
6秒前
ding应助Xxx采纳,获得10
7秒前
8秒前
lei应助开开开采纳,获得20
8秒前
9秒前
领导范儿应助css采纳,获得10
9秒前
yu完成签到,获得积分10
9秒前
赘婿应助lan采纳,获得10
9秒前
9秒前
10秒前
今后应助踏实的小海豚采纳,获得10
10秒前
斯文败类应助小余同学采纳,获得10
11秒前
英吉利25发布了新的文献求助10
11秒前
英姑应助Jieh采纳,获得10
12秒前
bkagyin应助yu采纳,获得10
12秒前
怕孤单的安蕾完成签到 ,获得积分10
13秒前
OoO发布了新的文献求助10
14秒前
14秒前
大侠发布了新的文献求助10
15秒前
LEE123发布了新的文献求助10
15秒前
慕青应助小盼虫采纳,获得10
16秒前
MANGMANG发布了新的文献求助10
16秒前
17秒前
阿Q完成签到 ,获得积分10
18秒前
18秒前
19秒前
20秒前
20秒前
大模型应助qianyuan采纳,获得10
22秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959531
求助须知:如何正确求助?哪些是违规求助? 3505774
关于积分的说明 11125924
捐赠科研通 3237671
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802902