Fibrous Structure and Stiffness of Designer Protein Hydrogels Synergize to Regulate Endothelial Differentiation of Bone Marrow Mesenchymal Stem Cells

自愈水凝胶 细胞外基质 细胞生物学 间充质干细胞 干细胞 化学 细胞分化 再生(生物学) 生物物理学 材料科学 生物医学工程 生物 生物化学 高分子化学 医学 基因
作者
Kai-Kai Tian,Sheng-Chen Huang,Xiao‐Xia Xia,Zhi‐Gang Qian
出处
期刊:Biomacromolecules [American Chemical Society]
卷期号:23 (4): 1777-1788 被引量:11
标识
DOI:10.1021/acs.biomac.2c00032
摘要

Matrix stiffness and fibrous structure provided by the native extracellular matrix have been increasingly appreciated as important cues in regulating cell behaviors. Recapitulating these physical cues for cell fate regulation remains a challenge due to the inherent difficulties in making mimetic hydrogels with well-defined compositions, tunable stiffness, and structures. Here, we present two series of fibrous and porous hydrogels with tunable stiffness based on genetically engineered resilin-silk-like and resilin-like protein polymers. Using these hydrogels as substrates, the mechanoresponses of bone marrow mesenchymal stem cells to stiffness and fibrous structure were systematically studied. For both hydrogel series, increasing compression modulus from 8.5 to 14.5 and 23 kPa consistently promoted cell proliferation and differentiation. Nonetheless, the promoting effects were more pronounced on the fibrous gels than their porous counterparts at all three stiffness levels. More interestingly, even the softest fibrous gel (8.5 kPa) allowed the stem cells to exhibit higher endothelial differentiation capability than the toughest porous gel (23 kPa). The predominant role of fibrous structure on the synergistic regulation of endothelial differentiation was further explored. It was found that the stiffness signal activated Yes-associated protein (YAP), the main regulator of endothelial differentiation, via spreading of focal adhesions, whereas fibrous structure reinforced YAP activation by promoting the maturation of focal adhesions and associated F-actin alignment. Therefore, our results shed light on the interplay of physical cues in regulating stem cells and may guide the fabrication of designer proteinaceous matrices toward regenerative medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
成就的书包完成签到,获得积分10
3秒前
小疙瘩发布了新的文献求助10
3秒前
4秒前
metalmd发布了新的文献求助10
4秒前
4秒前
学术蠕虫发布了新的文献求助10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
sutharsons应助科研通管家采纳,获得30
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
XShu发布了新的文献求助10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得30
7秒前
传奇3应助科研通管家采纳,获得30
7秒前
Owen应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
文艺明杰发布了新的文献求助100
9秒前
所所应助嘟嘟采纳,获得10
9秒前
11秒前
HMZ完成签到,获得积分10
11秒前
研友_LkYKJZ完成签到,获得积分10
11秒前
田様应助Khr1stINK采纳,获得10
11秒前
11秒前
风趣夜云完成签到,获得积分10
12秒前
12秒前
真实的一鸣完成签到,获得积分10
12秒前
调研昵称发布了新的文献求助50
13秒前
14秒前
yKkkkkk发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808