A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides

析氧 钙钛矿(结构) 电催化剂 材料科学 电化学 吸附 化学工程 化学物理 纳米技术 化学 电极 物理化学 工程类
作者
Daqin Guan,Jian Zhong,Hengyue Xu,Yucheng Huang,Zhiwei Hu,Bin Chen,Yuan Zhang,Meng Ni,Xiaomin Xu,Wei Zhou,Zongping Shao
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:9 (1) 被引量:137
标识
DOI:10.1063/5.0083059
摘要

Exploring effective, facile, and universal tuning strategies to optimize material physicochemical properties and catalysis processes is critical for many sustainable energy systems, but still challenging. Herein, we succeed to introduce tensile strain into various perovskites via a facile thermochemical reduction method, which can greatly improve material performance for the bottleneck oxygen-evolving reaction in water electrolysis. As an ideal proof-of-concept, such a chemical-induced tensile strain turns hydrophobic Ba5Co4.17Fe0.83O14-δ perovskite into the hydrophilic one by modulating its solid–liquid tension, contributing to its beneficial adsorption of important hydroxyl reactants as evidenced by fast operando spectroscopy. Both surface-sensitive and bulk-sensitive absorption spectra show that this strategy introduces oxygen vacancies into the saturated face-sharing Co-O motifs of Ba5Co4.17Fe0.83O14-δ and transforms such local structures into the unsaturated edge-sharing units with positive charges and enlarged electrochemical active areas, creating a molecular-level hydroxyl pool. Theoretical computations reveal that this strategy well reduces the thermodynamic energy barrier for hydroxyl adsorption, lowers the electronic work function, and optimizes the charge/electrostatic potential distribution to facilitate the electron transport between active sites and hydroxyl reactants. Also, this strategy is reliable for other single, double, and Ruddlesden–Popper perovskites. We believe that this finding will enlighten rational material design and in-depth understanding for many potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿浩完成签到,获得积分10
刚刚
蒙蒙完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
cchenn发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
ykk完成签到 ,获得积分10
2秒前
Orange应助liuyingjuan829采纳,获得10
2秒前
2秒前
李科含完成签到,获得积分20
2秒前
3秒前
遇见发布了新的文献求助10
3秒前
yfn发布了新的文献求助10
3秒前
h'c'z发布了新的文献求助10
3秒前
我是老大应助悲凉的便当采纳,获得10
3秒前
卷羊发布了新的文献求助10
4秒前
五毛完成签到,获得积分10
5秒前
hfhd完成签到,获得积分20
5秒前
coco完成签到,获得积分10
5秒前
帅气的馒头应助发财采纳,获得10
5秒前
充电宝应助Sandewna采纳,获得10
6秒前
香蕉诗蕊应助帅气善斓采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
懒羊羊不吃糖完成签到,获得积分10
6秒前
叶95发布了新的文献求助10
6秒前
暖阳完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
派大橘发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836