A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides

析氧 钙钛矿(结构) 电催化剂 材料科学 电化学 吸附 化学工程 化学物理 纳米技术 化学 电极 物理化学 工程类
作者
Daqin Guan,Jian Zhong,Hengyue Xu,Yucheng Huang,Zhiwei Hu,Bin Chen,Yuan Zhang,Meng Ni,Xiaomin Xu,Wei Zhou,Zongping Shao
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:9 (1) 被引量:137
标识
DOI:10.1063/5.0083059
摘要

Exploring effective, facile, and universal tuning strategies to optimize material physicochemical properties and catalysis processes is critical for many sustainable energy systems, but still challenging. Herein, we succeed to introduce tensile strain into various perovskites via a facile thermochemical reduction method, which can greatly improve material performance for the bottleneck oxygen-evolving reaction in water electrolysis. As an ideal proof-of-concept, such a chemical-induced tensile strain turns hydrophobic Ba5Co4.17Fe0.83O14-δ perovskite into the hydrophilic one by modulating its solid–liquid tension, contributing to its beneficial adsorption of important hydroxyl reactants as evidenced by fast operando spectroscopy. Both surface-sensitive and bulk-sensitive absorption spectra show that this strategy introduces oxygen vacancies into the saturated face-sharing Co-O motifs of Ba5Co4.17Fe0.83O14-δ and transforms such local structures into the unsaturated edge-sharing units with positive charges and enlarged electrochemical active areas, creating a molecular-level hydroxyl pool. Theoretical computations reveal that this strategy well reduces the thermodynamic energy barrier for hydroxyl adsorption, lowers the electronic work function, and optimizes the charge/electrostatic potential distribution to facilitate the electron transport between active sites and hydroxyl reactants. Also, this strategy is reliable for other single, double, and Ruddlesden–Popper perovskites. We believe that this finding will enlighten rational material design and in-depth understanding for many potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
刚刚
Fei_U发布了新的文献求助10
刚刚
刚刚
刚刚
苏苏苏发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
苏苏苏发布了新的文献求助30
1秒前
1秒前
dbb完成签到,获得积分10
1秒前
苏苏苏发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
YoungLee完成签到 ,获得积分10
3秒前
苏苏苏发布了新的文献求助10
3秒前
朴实冬灵完成签到,获得积分10
3秒前
苏苏苏发布了新的文献求助10
3秒前
清爽老九发布了新的文献求助10
3秒前
3秒前
3秒前
苏苏苏发布了新的文献求助10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618454
求助须知:如何正确求助?哪些是违规求助? 4703358
关于积分的说明 14922268
捐赠科研通 4757546
什么是DOI,文献DOI怎么找? 2550099
邀请新用户注册赠送积分活动 1512920
关于科研通互助平台的介绍 1474299