A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides

析氧 钙钛矿(结构) 电催化剂 材料科学 电化学 吸附 化学工程 化学物理 纳米技术 化学 电极 物理化学 工程类
作者
Daqin Guan,Jian Zhong,Hengyue Xu,Yucheng Huang,Zhiwei Hu,Bin Chen,Yuan Zhang,Meng Ni,Xiaomin Xu,Wei Zhou,Zongping Shao
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:9 (1) 被引量:137
标识
DOI:10.1063/5.0083059
摘要

Exploring effective, facile, and universal tuning strategies to optimize material physicochemical properties and catalysis processes is critical for many sustainable energy systems, but still challenging. Herein, we succeed to introduce tensile strain into various perovskites via a facile thermochemical reduction method, which can greatly improve material performance for the bottleneck oxygen-evolving reaction in water electrolysis. As an ideal proof-of-concept, such a chemical-induced tensile strain turns hydrophobic Ba5Co4.17Fe0.83O14-δ perovskite into the hydrophilic one by modulating its solid–liquid tension, contributing to its beneficial adsorption of important hydroxyl reactants as evidenced by fast operando spectroscopy. Both surface-sensitive and bulk-sensitive absorption spectra show that this strategy introduces oxygen vacancies into the saturated face-sharing Co-O motifs of Ba5Co4.17Fe0.83O14-δ and transforms such local structures into the unsaturated edge-sharing units with positive charges and enlarged electrochemical active areas, creating a molecular-level hydroxyl pool. Theoretical computations reveal that this strategy well reduces the thermodynamic energy barrier for hydroxyl adsorption, lowers the electronic work function, and optimizes the charge/electrostatic potential distribution to facilitate the electron transport between active sites and hydroxyl reactants. Also, this strategy is reliable for other single, double, and Ruddlesden–Popper perovskites. We believe that this finding will enlighten rational material design and in-depth understanding for many potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Cheny采纳,获得10
刚刚
一只西瓜茶完成签到,获得积分10
1秒前
1秒前
2秒前
共享精神应助kevimfr采纳,获得10
3秒前
4秒前
务实豪完成签到,获得积分20
6秒前
在水一方应助碧蓝青梦采纳,获得10
6秒前
lrsabrina完成签到,获得积分20
7秒前
SciGPT应助心行采纳,获得10
7秒前
ChuangyangLi发布了新的文献求助10
8秒前
10秒前
乐乐应助Foalphaz采纳,获得10
11秒前
11秒前
Artist完成签到 ,获得积分10
12秒前
zh_li完成签到,获得积分10
12秒前
haipronl应助科研通管家采纳,获得50
13秒前
Akim应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
小青椒应助科研通管家采纳,获得30
13秒前
13秒前
13秒前
ding应助科研通管家采纳,获得10
13秒前
15秒前
15秒前
15秒前
刘铠瑜发布了新的文献求助10
16秒前
朱朱完成签到 ,获得积分10
17秒前
17秒前
Zox发布了新的文献求助10
17秒前
孤独如曼发布了新的文献求助10
19秒前
wusj120发布了新的文献求助10
19秒前
20秒前
fengpu完成签到,获得积分0
20秒前
22秒前
心行发布了新的文献求助10
22秒前
22秒前
irvinzp完成签到,获得积分10
23秒前
风间琉璃发布了新的文献求助10
26秒前
程艾影发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565868
求助须知:如何正确求助?哪些是违规求助? 4650808
关于积分的说明 14693385
捐赠科研通 4592912
什么是DOI,文献DOI怎么找? 2519798
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463329