A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides

析氧 钙钛矿(结构) 电催化剂 材料科学 电化学 吸附 化学工程 化学物理 纳米技术 化学 电极 物理化学 工程类
作者
Daqin Guan,Jian Zhong,Hengyue Xu,Yucheng Huang,Zhiwei Hu,Bin Chen,Yuan Zhang,Meng Ni,Xiaomin Xu,Wei Zhou,Zongping Shao
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:9 (1) 被引量:135
标识
DOI:10.1063/5.0083059
摘要

Exploring effective, facile, and universal tuning strategies to optimize material physicochemical properties and catalysis processes is critical for many sustainable energy systems, but still challenging. Herein, we succeed to introduce tensile strain into various perovskites via a facile thermochemical reduction method, which can greatly improve material performance for the bottleneck oxygen-evolving reaction in water electrolysis. As an ideal proof-of-concept, such a chemical-induced tensile strain turns hydrophobic Ba5Co4.17Fe0.83O14-δ perovskite into the hydrophilic one by modulating its solid–liquid tension, contributing to its beneficial adsorption of important hydroxyl reactants as evidenced by fast operando spectroscopy. Both surface-sensitive and bulk-sensitive absorption spectra show that this strategy introduces oxygen vacancies into the saturated face-sharing Co-O motifs of Ba5Co4.17Fe0.83O14-δ and transforms such local structures into the unsaturated edge-sharing units with positive charges and enlarged electrochemical active areas, creating a molecular-level hydroxyl pool. Theoretical computations reveal that this strategy well reduces the thermodynamic energy barrier for hydroxyl adsorption, lowers the electronic work function, and optimizes the charge/electrostatic potential distribution to facilitate the electron transport between active sites and hydroxyl reactants. Also, this strategy is reliable for other single, double, and Ruddlesden–Popper perovskites. We believe that this finding will enlighten rational material design and in-depth understanding for many potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
飘逸冷珍发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
Hunter1023完成签到,获得积分10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
宋明阳应助科研通管家采纳,获得10
2秒前
宋明阳应助科研通管家采纳,获得10
2秒前
ParkMoonJ发布了新的文献求助10
2秒前
阔达宝莹完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
2秒前
zz发布了新的文献求助10
3秒前
4秒前
Rita发布了新的文献求助10
4秒前
顾矜应助黄志广采纳,获得10
5秒前
阔达宝莹发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
勤奋帽子发布了新的文献求助10
6秒前
snow发布了新的文献求助30
7秒前
明理的鸿煊完成签到,获得积分10
7秒前
蛰曜发布了新的文献求助10
8秒前
aczqay发布了新的文献求助10
9秒前
ckk发布了新的文献求助10
9秒前
酷波er应助wly采纳,获得10
10秒前
CC发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436160
求助须知:如何正确求助?哪些是违规求助? 4548217
关于积分的说明 14212695
捐赠科研通 4468449
什么是DOI,文献DOI怎么找? 2449020
邀请新用户注册赠送积分活动 1439955
关于科研通互助平台的介绍 1416594