A Novel Subpixel Circle Detection Method Based on the Blurred Edge Model

亚像素渲染 霍夫变换 人工智能 稳健性(进化) 计算机科学 计算机视觉 单位圆 数学 边缘检测 离群值 Canny边缘检测器 算法 像素 图像(数学) 图像处理 几何学 基因 生物化学 化学
作者
Weihua Liu,Xianqiang Yang,Hao Sun,Xuebo Yang,Xinghu Yu,Huijun Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:13
标识
DOI:10.1109/tim.2021.3130924
摘要

Circle detection is a critical issue in computer vision and image processing. Whether in natural images or industrial images, the accuracy of circle detection has a significant impact on advanced vision applications. Conventional methods, such as circle Hough transform, random circle detection, and EDCircles, only reach pixel-level edge accuracy. This article proposes a subpixel circle detection method based on subpixel edges with accuracy of one-tenth of one pixel. All candidate circles are first detected by EDCircles. The circle scoring formula based on polarity, radius, and contour is then proposed to sort the detected circles, and the circle with the highest score is selected as the target. The 2-D subpixel calculation problem is transformed into the 1-D fitting problem, and the subpixel edge region is selected according to the gradient direction of the circular edge. To reduce the error of the step model and the real edge, the blurred edge model is proposed to fit the region. Subsequently, the parameters of the edge model are transformed into subpixel coordinates. To solve the problem that the traditional $L2$ -loss function is not robust to outliers, the Huber loss function is finally applied to the circle fitting, and the gradient descent method is adopted to calculate the circle parameters. Experiments on natural and industrial images show that the proposed method has good performance on robustness and accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助许戈追求进步采纳,获得10
刚刚
1秒前
七叶树完成签到,获得积分10
1秒前
1秒前
爆米花应助清爽泥猴桃采纳,获得10
1秒前
皮蛋完成签到,获得积分10
2秒前
彭于彦祖应助奔奔采纳,获得30
2秒前
2秒前
jxt完成签到,获得积分10
2秒前
乐乐应助亚尔采纳,获得10
3秒前
Leona666发布了新的文献求助100
4秒前
上官若男应助拼搏的从雪采纳,获得10
4秒前
MMM发布了新的文献求助10
4秒前
忧心的捕完成签到,获得积分10
4秒前
自由妙竹完成签到 ,获得积分10
4秒前
kurumi0601完成签到,获得积分10
4秒前
4秒前
端庄千琴完成签到,获得积分10
4秒前
rorraine_xu完成签到,获得积分10
4秒前
在水一方应助江河JT采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
fengjingjun完成签到,获得积分10
5秒前
5秒前
6秒前
0994完成签到 ,获得积分10
6秒前
852应助林加雄采纳,获得10
6秒前
7秒前
Criminology34应助Iris99采纳,获得10
7秒前
8秒前
Owen应助忧心的捕采纳,获得10
8秒前
小二郎应助ZiruiDing采纳,获得10
9秒前
9秒前
9秒前
9秒前
菜菜发布了新的文献求助10
9秒前
Akim应助啊懂采纳,获得10
10秒前
贰拾发布了新的文献求助10
10秒前
亚尔完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786