Two_Arch2: An Improved Two-Archive Algorithm for Many-Objective Optimization

进化算法 趋同(经济学) 计算机科学 数学优化 选择(遗传算法) 规范(哲学) 多目标优化 算法 进化计算 最优化问题 帕累托原理 水准点(测量) 数学 人工智能 经济增长 经济 政治学 法学 地理 大地测量学
作者
Handing Wang,Licheng Jiao,Xin Yao
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 524-541 被引量:509
标识
DOI:10.1109/tevc.2014.2350987
摘要

Many-objective optimization problems (ManyOPs) refer, usually, to those multiobjective problems (MOPs) with more than three objectives. Their large numbers of objectives pose challenges to multiobjective evolutionary algorithms (MOEAs) in terms of convergence, diversity, and complexity. Most existing MOEAs can only perform well in one of those three aspects. In view of this, we aim to design a more balanced MOEA on ManyOPs in all three aspects at the same time. Among the existing MOEAs, the two-archive algorithm (Two_Arch) is a low-complexity algorithm with two archives focusing on convergence and diversity separately. Inspired by the idea of Two_Arch, we propose a significantly improved two-archive algorithm (i.e., Two_Arch2) for ManyOPs in this paper. In our Two_Arch2, we assign different selection principles (indicator-based and Pareto-based) to the two archives. In addition, we design a new Lp-norm-based (p <; 1) diversity maintenance scheme for ManyOPs in Two_Arch2. In order to evaluate the performance of Two_Arch2 on ManyOPs, we have compared it with several MOEAs on a wide range of benchmark problems with different numbers of objectives. The experimental results show that Two_Arch2 can cope with ManyOPs (up to 20 objectives) with satisfactory convergence, diversity, and complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助Abi采纳,获得10
刚刚
刚刚
lius完成签到,获得积分10
刚刚
啤酒白酒葡萄酒完成签到,获得积分10
刚刚
幸福小蛋挞完成签到,获得积分10
1秒前
MrX发布了新的文献求助10
1秒前
1秒前
碎片完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
Denvir完成签到 ,获得积分0
2秒前
马哈哈发布了新的文献求助10
3秒前
3秒前
4秒前
Mrchen发布了新的文献求助10
4秒前
4秒前
4秒前
浮游应助成就的蓝采纳,获得10
5秒前
科目三应助畸你太美采纳,获得10
5秒前
啸西风完成签到,获得积分10
5秒前
5秒前
5秒前
xunzhi完成签到 ,获得积分10
6秒前
汉堡包应助ember采纳,获得10
6秒前
刻苦山柳完成签到,获得积分10
6秒前
YANG发布了新的文献求助10
6秒前
子车茗应助npccc采纳,获得20
7秒前
思源应助泷生采纳,获得10
7秒前
嬴政飞发布了新的文献求助10
7秒前
8秒前
8秒前
David发布了新的文献求助10
8秒前
llll发布了新的文献求助10
8秒前
8秒前
善学以致用应助ZYF采纳,获得10
9秒前
传奇3应助好运来好运来采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576645
求助须知:如何正确求助?哪些是违规求助? 4662026
关于积分的说明 14739107
捐赠科研通 4602583
什么是DOI,文献DOI怎么找? 2525877
邀请新用户注册赠送积分活动 1495813
关于科研通互助平台的介绍 1465448