里兹法
深度学习
特征向量
下降(航空)
非线性系统
简单(哲学)
梯度下降
计算机科学
数学
算法
数学优化
应用数学
人工智能
人工神经网络
数学分析
工程类
量子力学
认识论
物理
哲学
航空航天工程
边值问题
标识
DOI:10.1007/s40304-018-0127-z
摘要
We propose a deep learning-based method, the Deep Ritz Method, for numerically solving variational problems, particularly the ones that arise from partial differential equations. The Deep Ritz Method is naturally nonlinear, naturally adaptive and has the potential to work in rather high dimensions. The framework is quite simple and fits well with the stochastic gradient descent method used in deep learning. We illustrate the method on several problems including some eigenvalue problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI