Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans

人工智能 计算机科学 强化学习 地标 计算机视觉 深度学习 目标检测 医学影像学 模式识别(心理学) 特征(语言学) 对象(语法) 比例(比率) 透视图(图形) 机器学习 哲学 物理 量子力学 语言学
作者
Florin‐Cristian Ghesu,Bogdan Georgescu,Yefeng Zheng,Saša Grbić,Andreas Maier,Joachim Hornegger,Dorin Comaniciu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:41 (1): 176-189 被引量:291
标识
DOI:10.1109/tpami.2017.2782687
摘要

Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated image databases in order to learn the appearance of the captured anatomy. These solutions are subject to several limitations, including the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes for anatomy detection. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluated our approach on 1487 3D-CT volumes from 532 patients, totaling over 500,000 image slices and show that it significantly outperforms state-of-the-art solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective, while also achieving a 20-30 percent higher detection accuracy. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of magnitude, achieving unmatched real-time performance on large 3D-CT scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实向雁发布了新的文献求助10
刚刚
xunl发布了新的文献求助10
1秒前
mingming发布了新的文献求助10
2秒前
202483067完成签到 ,获得积分10
3秒前
xunl完成签到,获得积分10
8秒前
CodeCraft应助海德堡采纳,获得10
11秒前
颖火虫2588完成签到,获得积分10
14秒前
mingming发布了新的文献求助10
15秒前
tong完成签到,获得积分10
16秒前
汉堡包应助shinn采纳,获得10
16秒前
默默zzz完成签到 ,获得积分10
18秒前
enoch完成签到,获得积分10
19秒前
19秒前
19秒前
22秒前
22秒前
打打应助夜影阑珊采纳,获得10
23秒前
24秒前
lvlv发布了新的文献求助10
24秒前
海德堡发布了新的文献求助10
26秒前
orixero应助zby2采纳,获得10
27秒前
小乐子发布了新的文献求助10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
dypdyp应助科研通管家采纳,获得10
28秒前
共享精神应助科研通管家采纳,获得30
28秒前
28秒前
29秒前
29秒前
29秒前
29秒前
29秒前
汉堡包应助科研通管家采纳,获得10
29秒前
29秒前
30秒前
shinn发布了新的文献求助10
31秒前
Tracy完成签到,获得积分10
32秒前
Misaki完成签到,获得积分10
34秒前
34秒前
科研通AI5应助九号采纳,获得10
34秒前
冷萃发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468