Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans

人工智能 计算机科学 强化学习 地标 计算机视觉 深度学习 目标检测 医学影像学 模式识别(心理学) 特征(语言学) 对象(语法) 比例(比率) 透视图(图形) 机器学习 哲学 物理 量子力学 语言学
作者
Florin‐Cristian Ghesu,Bogdan Georgescu,Yefeng Zheng,Saša Grbić,Andreas Maier,Joachim Hornegger,Dorin Comaniciu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 176-189 被引量:291
标识
DOI:10.1109/tpami.2017.2782687
摘要

Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated image databases in order to learn the appearance of the captured anatomy. These solutions are subject to several limitations, including the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes for anatomy detection. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluated our approach on 1487 3D-CT volumes from 532 patients, totaling over 500,000 image slices and show that it significantly outperforms state-of-the-art solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective, while also achieving a 20-30 percent higher detection accuracy. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of magnitude, achieving unmatched real-time performance on large 3D-CT scans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助stella采纳,获得10
刚刚
cya发布了新的文献求助10
2秒前
Mira完成签到,获得积分10
2秒前
2秒前
搜集达人应助裴秀智采纳,获得30
3秒前
Steven发布了新的文献求助10
3秒前
4秒前
明明明发布了新的文献求助10
4秒前
JamesPei应助ccyy采纳,获得10
4秒前
棋士发布了新的文献求助10
4秒前
美好易完成签到,获得积分10
5秒前
科研通AI2S应助枫溪采纳,获得10
5秒前
完美世界应助闫永洁采纳,获得10
5秒前
刁弘睿完成签到,获得积分10
6秒前
hq发布了新的文献求助10
6秒前
深情安青应助猜不猜不采纳,获得10
6秒前
田园镇完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助30
6秒前
宋真玉完成签到,获得积分10
7秒前
完美世界应助cg666采纳,获得10
8秒前
猫猫无敌发布了新的文献求助10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
spc68应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
危机的阁应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
9秒前
研友_Z60ObL完成签到,获得积分10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
mm应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
10秒前
无极微光应助科研通管家采纳,获得20
10秒前
10秒前
英姑应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425