Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans

人工智能 计算机科学 强化学习 地标 计算机视觉 深度学习 目标检测 医学影像学 模式识别(心理学) 特征(语言学) 对象(语法) 比例(比率) 透视图(图形) 机器学习 哲学 物理 量子力学 语言学
作者
Florin‐Cristian Ghesu,Bogdan Georgescu,Yefeng Zheng,Saša Grbić,Andreas Maier,Joachim Hornegger,Dorin Comaniciu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 176-189 被引量:291
标识
DOI:10.1109/tpami.2017.2782687
摘要

Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated image databases in order to learn the appearance of the captured anatomy. These solutions are subject to several limitations, including the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes for anatomy detection. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluated our approach on 1487 3D-CT volumes from 532 patients, totaling over 500,000 image slices and show that it significantly outperforms state-of-the-art solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective, while also achieving a 20-30 percent higher detection accuracy. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of magnitude, achieving unmatched real-time performance on large 3D-CT scans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轩辕剑身完成签到,获得积分0
刚刚
1101592875完成签到,获得积分10
1秒前
木雨亦潇潇完成签到,获得积分10
1秒前
刘亮亮完成签到,获得积分10
2秒前
www完成签到 ,获得积分0
2秒前
QS完成签到,获得积分10
2秒前
Lucas应助WJY采纳,获得10
4秒前
4秒前
Panini完成签到 ,获得积分10
5秒前
zhang完成签到 ,获得积分10
6秒前
她的城完成签到,获得积分0
7秒前
韩祖完成签到 ,获得积分10
7秒前
科研通AI6应助垣味栗子酱采纳,获得10
8秒前
Ellalala完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
10秒前
草木发布了新的文献求助10
12秒前
12秒前
Much完成签到 ,获得积分10
15秒前
凡华完成签到 ,获得积分10
17秒前
奋进中的科研小菜鸟完成签到,获得积分10
18秒前
21秒前
星空完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
26秒前
巧克力完成签到 ,获得积分10
26秒前
HU完成签到,获得积分10
27秒前
垣味栗子酱完成签到,获得积分20
28秒前
胖胖玩啊玩完成签到 ,获得积分10
30秒前
Tammy完成签到,获得积分10
30秒前
阿伟完成签到,获得积分10
32秒前
无极微光应助白华苍松采纳,获得20
33秒前
酷酷的安柏完成签到 ,获得积分10
34秒前
35秒前
lovekobe完成签到 ,获得积分10
35秒前
鲁卓林完成签到,获得积分10
35秒前
甜美傲蕾完成签到,获得积分10
36秒前
36秒前
yunt完成签到 ,获得积分10
38秒前
小高完成签到 ,获得积分10
39秒前
kyros完成签到,获得积分10
40秒前
Java完成签到,获得积分10
40秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590