Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans

人工智能 计算机科学 强化学习 地标 计算机视觉 深度学习 目标检测 医学影像学 模式识别(心理学) 特征(语言学) 对象(语法) 比例(比率) 透视图(图形) 机器学习 哲学 物理 量子力学 语言学
作者
Florin‐Cristian Ghesu,Bogdan Georgescu,Yefeng Zheng,Saša Grbić,Andreas Maier,Joachim Hornegger,Dorin Comaniciu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 176-189 被引量:291
标识
DOI:10.1109/tpami.2017.2782687
摘要

Robust and fast detection of anatomical structures is a prerequisite for both diagnostic and interventional medical image analysis. Current solutions for anatomy detection are typically based on machine learning techniques that exploit large annotated image databases in order to learn the appearance of the captured anatomy. These solutions are subject to several limitations, including the use of suboptimal feature engineering techniques and most importantly the use of computationally suboptimal search-schemes for anatomy detection. To address these issues, we propose a method that follows a new paradigm by reformulating the detection problem as a behavior learning task for an artificial agent. We couple the modeling of the anatomy appearance and the object search in a unified behavioral framework, using the capabilities of deep reinforcement learning and multi-scale image analysis. In other words, an artificial agent is trained not only to distinguish the target anatomical object from the rest of the body but also how to find the object by learning and following an optimal navigation path to the target object in the imaged volumetric space. We evaluated our approach on 1487 3D-CT volumes from 532 patients, totaling over 500,000 image slices and show that it significantly outperforms state-of-the-art solutions on detecting several anatomical structures with no failed cases from a clinical acceptance perspective, while also achieving a 20-30 percent higher detection accuracy. Most importantly, we improve the detection-speed of the reference methods by 2-3 orders of magnitude, achieving unmatched real-time performance on large 3D-CT scans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可可卡比兽完成签到 ,获得积分10
刚刚
刚刚
饭饭发布了新的文献求助10
刚刚
刚刚
马甲发布了新的文献求助10
1秒前
Tam应助科研通管家采纳,获得50
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
唐代斯发布了新的文献求助10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
羊青发布了新的文献求助10
4秒前
4秒前
元神发布了新的文献求助10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
liao应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
小哦嘿应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
完美世界应助lrid采纳,获得10
6秒前
6秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
陆路露禄发布了新的文献求助10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
小哦嘿应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109